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Abstract— Recently, pedestrian behavior research has shifted
towards machine learning based methods and converged on the
topic of modeling pedestrian interactions. For this, a large-scale
dataset that contains rich information is needed. We propose a
data collection system that is portable, which facilitates accessi-
ble large-scale data collection in diverse environments. We also
couple the system with a semi-autonomous labeling pipeline
for fast trajectory label production. We further introduce the
first batch of dataset from the ongoing data collection effort –
the TBD pedestrian dataset. Compared with existing pedestrian
datasets, our dataset contains three components: human verified
labels grounded in the metric space, a combination of top-down
and perspective views, and naturalistic human behavior in the
presence of a socially appropriate “robot”.

I. INTRODUCTION

Pedestrian datasets are essential tools for designing so-
cially appropriate robot behaviors, recognizing and predict-
ing human actions, and studying pedestrian behavior. A
generally accepted assumption for these datasets is that real-
world pedestrians are experts in analyzing and navigating
human crowds because they are proficient at behaving in
accordance to social interaction norms.

Researchers may use these data to predict future pedestrian
motions, including forecasting their trajectories [1], [7],
[8], and/or navigation goals [9], [12]. In social navigation,
datasets can also be used to model interactions. For example,
a key problem researchers have tried to address is the freezing
robot problem [21], in which the robot becomes stuck in
dense, crowded situations while trying to be deferential to
human movements for safety or end user acceptance reasons.
Researchers have attributed this problem to robot’s inability
to model interactions [20]. In other words, most current
navigation algorithms do not consider pedestrian reactions
and assume a non-cooperative environment. Some works [15]
have used datasets to show that modeling the anticipation of
human reactions to the robot’s actions enables the robot to
deliver a better performance.

In order to better capture and model interactions to im-
prove the performance of various pedestrian-related algo-
rithms, considerably more data is needed across a variety
of environments. To this end, we have constructed a data
collection system that can achieve these two requirements:
large quantity and environment diversity. First, we ensure
that our equipment is completely portable and easy to set
up. This allows collecting data in a variety of locations

*This work was supported by grant (IIS-1734361) and (IIS-1900821)
from the National Science Foundation

1The authors are with the Robotics Institute, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA
{allanwan, abhijatb}@andrew.cmu.edu, {henny,
steinfeld}@cmu.edu

Fig. 1: This set of images represent the same moment
recorded from multiple sensors: a) Top-down view image
taken by a static camera with ground truth pedestrian tra-
jectory labels shown. b) Perspective-view image from a
360 camera that captures high definition videos of nearby
pedestrians. c) Perspective-view RBG and depth images from
a stereo camera mounted on a cart that is used to imitate
onboard robot sensors. Green vertical bars represent the
projected labels. Note that two pedestrians at the back are
partially and completely occluded from the stereo camera.

with limited lead time. Second, we address the challenge
of labeling large quantities of data using a semi-autonomous
labelling pipeline. We employ a state-of-the-art deep learning
based [23] tracking module combined with various post-
processing procedures to automatically produce high quality
ground truth pedestrian trajectories in metric space.

We hope our dataset approach offers various improvements
and aims to accommodate a wide variety of pedestrian
behavior research. Specifically, we include three important
characteristics: (1) ground truth labeling in metric space,
(2) perspective views from a moving agent, and (3) natural
human motion. To the best of our knowledge, publicly avail-
able datasets only have at most two of these characteristics,
but not all three. We demonstrate our system through a
dataset collected in a large indoor space: the TBD pedestrian
dataset1. Our dataset contains scenes with a variety of crowd
densities and pedestrian interactions. This dataset can be
used to complement existing datasets by injecting a new data
environment and more pedestrian behavior distribution into
existing dataset mixtures, such as [10]. This is an ongoing
effort and we have only released the first dataset batch.

1https://tbd.ri.cmu.edu/tbd-social-navigation-datasets

https://tbd.ri.cmu.edu/tbd-social-navigation-datasets


II. SYSTEM DESCRIPTION

A. Hardware Setup

Fig. 2: Sensor setup used to collect the TBD pedestrian
dataset. (left) one of three nodes used to used to capture
top-down RGB views. Each node is self contained with
an external battery and communicates wirelessly with other
nodes. (right) cart used to capture sensor views from the
mobile robot perspective during data collection. The cart is
powered by an onboard power bank and laptop.

As shown in Figure 3, we positioned three FLIR Blackfly
RGB cameras (Figure 2) surrounding the scene on the upper
floors overlooking the ground level at roughly 90 degrees
apart from each other. The RGB cameras are connected to
portable computers powered by lead-acid batteries. We also
positioned three more units on the ground floor, but did not
use them for pedestrian labeling.

In addition to the RGB cameras, we pushed a cart through
the scene (Figure 2) equipped with a ZED stereo camera to
collect both perspective RGB views and depth information
of the scene. A GoPro Fusion 360 camera for capturing high
definition 360 videos of nearby pedestrians was mounted
above the ZED. Data from the on-board cameras are useful
in capturing pedestrian pose data and facial expressions. The
ZED camera was powered by a laptop with a power bank.
Our entire data collection hardware system is portable and
does not require power outlets, thereby allowing data collec-
tion outdoors or in areas where wall power is inaccessible.

During each data collection session, we pushed the cart
from one end of the scene to another end, while avoiding
pedestrians and obstacles along the way in a natural motion
similar to a human pushing a delivery cart. The purpose of
this cart was to represent a mobile robot traversing through
the human environment. However, unlike other datasets such
as [22] or [14] that use a Wizard-of-Oz controlled robot, we
used a manually pushed cart. This provided better trajectory
control, increased safety, and reduced the novelty effect from
pedestrians, as curious pedestrians may intentionally block
robots or display other unnatural movements [5].

The first batch of our data collection occurred on the
ground level in a large indoor atrium area (Figure 3). Half
of the atrium area had fixed entry/exit points that led to
corridors, elevators, stairs, and doors to the outside. The
other half of the atrium was adjacent to another large open
area and was unstructured with no fixed entry/exit points.
We collected data around lunch and dinner times to ensure
higher crowd densities. More data will be collected in the
future in locations such as transit stations.

Fig. 3: Hardware setup for the TBD pedestrian dataset. Red
circles indicate positions of RGB cameras. Green box shows
our mobile cart with a 360 camera and stereo camera which
imitate a mobile robot sensor suite. The cart is manually
pushed by a researcher during recording. The white area is
where trajectory labels are collected.

B. Post-processing and Labeling

A summary of our post processing pipeline is summarized
in Figure 4. We expand on select nodes to explain the post-
processing procedures in greater detail.

Fig. 4: Flowchart for our post-processing pipeline. Blue
blocks are preparation procedures and orange blocks are la-
beling procedures. The green block transforms all trajectory
labels onto the ground plane z = 0.

1) Time synchronization: To ensure time synchronization
across the captured videos, we employed Precision Time
Protocol over a wireless network to synchronize each of the
the computers powering the cameras, which allows for sub-
microsecond synchronization. For redundancy, we held an
LED light at a location inside the field of view of all the
cameras and switched it on and off at the beginning of each
recording session. We then checked for the LED light signal
during the post-processing stage to synchronize the starting
frame of all the captured videos for each recording session.

2) Cart localization: After the cameras were synchro-
nized and calibrated, the next step was to localize the cart
in the scene. This was achieved by first identifying the cart
on the static camera videos and then applying the camera
matrices to obtain the metric coordinates. We are exploring
other localization methods (e.g., visual odometry and ultra
wide band positioning) and will continue to track progress on
large-space localization. For the first batch of data included
in our dataset, we manually labeled the locations of the cart.



3) Pedestrian tracking and labeling: Similar to cart local-
ization, we first tracked the pedestrians on the static camera
videos and then identified their coordinates on the ground
plane G. We found ByteTrack [23] to be very successful
in tracking pedestrians in the image space. Upon human
verification over our entire first batch of data, ByteTrack
successfully aided the trajectory labeling of 91.8% of the
pedestrians automatically.

Once we obtained the automatically tracked labels in pixel
space, we needed to convert them into metric space. With
ByteTrack, each camera video contained a set of tracked
trajectories in the image space Ti = {t1, ..., tn}, i ∈ {1, 2, 3}
where i is the camera index. We estimated the 3D trajectory
coordinates for each pair of 2D trajectories (ti, tj)|ti ∈
Ti, tj ∈ Tj , i ̸= j and the set of estimated coordinates that
resulted in the lowest reprojection error were selected to be
the final trajectory coordinates in the metric space.

Finally, we performed human verification over the en-
tire tracking output, fixing any errors observed during the
process. We also manually identified pedestrians that were
outside our target tracking zone but had interactions with
the pedestrians inside the tracking zone and included them
as part of our dataset.

III. DATASET CHARACTERISTICS

A. Comparison with Existing Datasets

Compared to existing datasets collected in pedestrian
natural environments, our TBD pedestrian dataset contains
three components that greatly enhances the dataset’s utility.
These components are:

Human verified labels grounded in metric space. ETH
[17] and UCY [11] datasets are often the only datasets to be
included during the evaluation of various research models in
many papers. This is largely because the trajectory labels in
these datasets are human verified, unlike [13], [2], [24], and
[4] that solely rely on automatic tracking to produce labels.
These trajectory labels are also grounded in metric space
rather than image space (e.g. [18] and [3] only contain labels
in bounding boxes). Having labels grounded in metric space
eliminates the possibility that camera poses might have an
effect on the scale of the labels. It also makes the dataset
useful for robot navigation related research because robots
plan in the metric space rather than image space.

Combination of top-down views and perspective views.
Similar to datasets with top-down views, we use top-down
views to obtain ground truth trajectory labels for every pedes-
trian present in the scene. Similar to datasets with perspective
views, we gather perspective views from a “robot” to imitate
robot perception of human crowds. A dataset that contains
both top-down views and perspective views will be useful for
research projects that rely on perspective views. This allows
perspective inputs to their models, while still having access
to ground truth knowledge of the entire scene.

Naturalistic human behavior with the presence of a
“robot”. Unlike datasets such as [22] or [14], the “robot”
that provides perspective view data collection is a cart being
pushed by human. As mentioned in section II-A, doing so

TABLE I: A survey of existing pedestrian datasets on how
they incorporate the three components in section III-A. For
component 1, a “No” means either not human verified or not
grounded in metric space. For component 2, TD stands for
“top-down view” and “P” stands for “perspective view”.

Datasets Comp. 1 Comp. 2 Comp. 3
(metric labels) (views) (“robot”)

TBD (Ours) Yes TD + P Human + Cart
ETH [17] Yes TD N/A
UCY [11] Yes TD N/A

Edinburgh Forum [13] No TD N/A
VIRAT [16] No TD N/A

Town Centre [3] No TD N/A
Grand Central [24] No TD N/A

CFF [2] No TD N/A
Stanford Drone [18] No TD N/A

L-CAS [22] No* P Robot
WildTrack [6] Yes TD N/A

JackRabbot [14] Yes P Robot
ATC [4] No TD N/A

THÖR [19] Yes TD + P Robot

reduces the novelty effects from the surrounding pedestrians.
Having the “robot” being pushed by humans also ensures
safety for the pedestrians and its own motion has more
natural human behavior.

As shown in Table I, current datasets only contain at
most two of the three components2. A close comparison is
the THÖR dataset [19], but its perspective view data are
collected by a robot. Additionally, unlike all other datasets
in Table I, the THÖR dataset is collected in a controlled lab
setting rather than in the wild. This injects artificial factors
into human behavior, making them unnatural.

B. Dataset Statistics

TABLE II: Comparison of statistics between our dataset and
other datasets that provide human verified labels grounded
in the metric space. For total time length, 51 minutes of our
dataset includes the perspective view data.

Datasets Time length # of pedestrians Label freq (Hz)

TBD (Ours) 133 mins 1416 60(51 mins)
ETH [17] 25 mins 650 15
UCY [11] 16.5 mins 786 2.5

WildTrack [6] 200 sec 313 2
JackRabbot [14] 62 mins 260 7.5

THÖR [19] 60+ mins 600+ 100

Table II demonstrates the benefit of a semi-automatic
labeling pipeline. With the aid of an autonomous tracker,
humans only need to verify and make occasional corrections
on the tracking outcomes instead of locating the pedestrians
on every single frame. The data we have collected so far
already surpassed all other datasets that provide human veri-
fied labels in the metric space in terms of total time, number

2*L-CAS dataset does provide human verified labels grounded in the
metric space. However, its pedestrian labels do not contain trajectory data,
which means this dataset has limited usage in pedestrian behavior research.



Fig. 5: Example scenes from the TBD pedestrian dataset. a)
a dynamic group. b) a static conversational group. c) a large
tour group with 14 pedestrians. d) a pedestrian affecting other
pedestrians’ navigation plans by asking them to come to the
table. e) pedestrians stop and look at their phones. f) two
pedestrians change their navigation goals and turn towards
the table. g) a group of pedestrians change their navigation
goals multiple times. h) a crowded scene where pedestrians
are heading towards different directions.

of pedestrians and labeling frequency. We will continue this
effort and collect more data for future works.

C. Qualitative Pedestrian Behavior

Due to the nature of the environment where we collected
the data, we observe a mixture of corridor and open space
pedestrian behavior, many of which are rarely seen in other
datasets. As shown in Figure 5, we observe both static
conversation groups and dynamic walking groups. We also
observe that some pedestrians naturally change goals mid-
navigation.

IV. FUTURE WORK

A key concern about our current data collection setup is
that our sensors consist purely of cameras. For better labeling
accuracy, we are exploring adding a LiDAR to aid the
autonomous tracking of pedestrians and adding an ultra wide
band positioning system for better cart state estimation. We
also plan to continue making improvements to our software
system and underlying methods. Currently, the bottleneck to
produce huge quantities of data still lies in correcting the few
erroneous tracking outcomes of the automatic tracking pro-
cedures. A centralized user interface is under development to
better document these tracking errors and to provide intuitive
tools to fix them. As mentioned earlier, our approach enables
additional data collection in a wide range of locations and
constraints. Additional data collection and public updates to
this initial dataset are planned.
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