Towards Reliable Benchmarking for Multi-Robot Planning
in Realistic, Cluttered and Complex Environments

Simon Schaefer!, Luigi Palmieri2, Lukas Heuer?, Niels van DuijkerenQ,

Ruediger Dillmann®, Sven Koenig®, Alexander Kleiner

Abstract— Multi-robot planning and coordination is a hard
task to solve particularly in cluttered and complex environ-
ments. Several methods exist for solving such task. Due to
the lack of adequate benchmarking tools, comparing these
approaches and judging their suitability for use in realistic
scenarios is currently difficult. To this end, in this work we
propose a novel benchmark toolchain that aims to close this
gap. Differently from the related works, our benchmark uses
full-stack multi-robot navigation systems in realistic 3D sim-
ulated intralogistic and household environments. Open-source
frameworks ROS2, Gazebo and RMF allow to add novel robot
platforms easily. The framework provides easy-to-use and to-
extend abstractions, common metrics and interfaces to several
well-known planning libraries for multi-robot systems. With
all these features our framework successfully aids practitioners
and researchers in comparing multi-robot planning and coor-
dination algorithms to the state of the art.

I. INTRODUCTION

Planning for and controlling a fleet of autonomous robots
is a challenging task, especially in cluttered and dynamic
environments. Such systems are controlled by a complex
pipeline of components ranging from centralized path find-
ers to local distributed controllers, each having their own
limitations. For instance, optimal Multi-Agent Path Finding
(MAPF) and generalized task assignment are typically NP-
hard [8] [21], even in static environments. Many suboptimal
but faster algorithmic solutions have been proposed, choosing
the best solution for a certain application and a given set
selection criteria is difficult. This is particularly true for
fleets of robotic systems navigating in uncertain and dynamic
environments.

Several works on benchmarking have been presented re-
cently [4], [14], [18], [20]. However, they only consider
a part of the pipeline for fleets of robots, most of them
focusing only on path planning. With the goal of enabling
practitioners and researchers to select the algorithms best
suited for their robotic fleets, we propose a multi-robot
planning and coordination benchmark toolchain that con-
siders several planning and control layers (i.e., centralized
and decentralized MAPF algorithms, single robot navigation

1S.Schaefer and R. Dillmann are with the Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany {mrp@simon-schaefer.net,
ruediger.dillmann@kit.edu}

2L.Palmieri, L.Heuer, N. van Duijkeren and A.Kleiner are
with Robert Bosch GmbH, Corporate Research, Stuttgart, Germany
{luigi .palmieri, lukas.heuer, niels.vanduijkeren,
alexandre.kleiner}@de.bosch.com

3S. Koenig is with the Computer Science Department of the University
of Southern California {skoenig@usc.edu}

This work was partly supported by the EU Horizon 2020 research and
innovation program under grant agreement No. 101017274 (DARKO).

2

Fig. 1: Several robots moving in the warehouse environment. The
individual laser scanners are visualized with blue rays.

systems composed of global and local planners). The open-
source framework includes a set of relevant service-robot-
oriented simulated environments, metrics, and interfaces to
available state-of-the-art planners and navigation systems.
Its modular structure and versatile interfaces facilitate its
extension with further scenarios, algorithms, or additional
functionalities.

II. RELATED WORK

Benchmarking planning algorithms has received a lot of
attention in the last years [3], [4], [6], [9], [14], [16], [18],
[20]. Numerous benchmarks have been presented for multi-
robot planning and coordination [4], [14], [18], [20]. Stern
et al. [18] discuss a benchmark called “Grid-Based MAPF”
from MovingAlI [19], [20]. As the name suggests, different
grid-based maps are supplied. Maps are always in 2D and
each cell in a map is either blocked or not blocked for an
agent. For each of these maps, various scenarios are provided
(consisting of tuples of starts and goal cells). The number
of agents can be varied by selecting the desired amount of
tasks from the scenario, up to several hundreds. For each
task, an optimal path length is provided. On some of these
maps, the authors in [19], [20] performed further analysis,
allowing some estimation of their respective difficulty. This
benchmark assumes perfect knowledge of the world, while
our approach considers not only planning but also execution
in realistic simulated environments (thus considering possible
uncertainty). As opposed to the MovingAl maps, Asprilo
[4] offers a full simulation environment. This framework
is aimed specifically at intralogistic warehouse scenarios.

The world is represented by a 2D occupancy grid, similar
to the MovingAl maps. Specifics of intralogistics are also
modelled, including shelves containing items which need to
be brought to picking stations. Therefore, agents can perform
additional actions, such as picking up and place down a shelf,
instead of just moving from location to location. While the
constraints can be defined using answer set programming,
the robot motion model is rather simple and the focus lies
on abstract representations of agents. Different from our ap-
proach low level control (e.g. collision avoidance) of robots
is neglected. Flatland [1], [14] is a tool for benchmarking
vehicle rescheduling problem, but it is not well suited for
broader robotics domains we have in mind. The environ-
ments they consider are 2D grids with some restrictions on
transitions between cells: e.g., there is no type of cells that
allows entering and exiting a cell from all directions, as one
would expect for most household or intralogistics robots.
Contrarily to Flatland, our approach considers more realistic
robotic scenarios in terms of environment representation and
modelling of the systems to control.

Moreover, our approach different from all the others, aims
to reduce the gap between simulation and real-world oper-
ation by making use of state-of-the-art robotic frameworks,
namely: ROS2 [13] with Gazebo [10], Navigation 2 (Nav2)
[12], and the Robotics Middleware Framework (RMF) [15].

III. BENCHMARK IMPLEMENTATION

In this section, we explain key decisions in designing the
benchmark and outline its architecture.

A. Software Architecture

Figure [2| provides an overview of MRP-Bench.

1) Starting Up: The workflow starts at the RMF Traffic
Editor, which can be used to generate a Gazebo world
file with the intermediate step of a building.yaml descrip-
tion. Together with the config.yaml file, this provides the
necessary information for the Bench Manager Node to
start the benchmark, such as the number of robots, the
random seed and the start and goal coordinates. Using the
world file, Gazebo launches the simulated 3D environment.
From the simulation, a binary costmap is obtained using
raytracing. The building.yaml file contains a representation
of the navigation graph, which specifies the lanes that robots
can move in. From this navigation graph, another simpler
occupancy grid is created. This occupancy grid serves as an
input for the path planning algorithm. Some algorithms can
also use the navigation graph directly.

2) Planning and Fleet Management: If the planning li-
brary has managed to create a schedule, the Bench Man-
ager Node computes and saves performance metrics for the
planning, converts the schedule to a separate path request for
each agent, and sends it to the fleet server, which delivers
them to the individual Fleet Clients. The path consists of
several waypoints, that are provided to the local navigation
units.

3) Local Navigation: Together with a State Publisher
and the Fleet Client, a full Nav2 stack is spawned for
each robot. We use the standard global and local planning
algorithms provided by the main repository. The benchmark

user is free to choose which planners to use for their
scenarios. The Nav2 stack interpolates a local path between
the waypoints of the provided high-level path, controls the
robots, and in case of conflicts, performs collision avoidance
and local recovery. The ground truth position from the
simulator can be used, or the user can decide to run a SLAM
algorithm instead. Currently, the benchmark operates under
the assumption that robots progress from cell to cell with the
same average speed.

4) Data Visualization and Collection: Robot poses are
displayed on a map using the RMF Schedule Visualizer.
While the robots follow their schedule, their states (that
is poses and velocities) are recorded and can be analyzed
later to gather additional metrics. The users can also record
additional data in rosbag format. All self-coded nodes are
implemented in Python3. The architecture is heavily based
on the ROS2 launch system.

IV. EVALUATION SUB-SYSTEM

In this section we detail the scenarios and the metrics
included in the benchmark. They can be further extended
by the user.

A. Scenarios

We provide three main environments, namely the office,
the airport and warehouse, see Figures E] and E} Their
main properties are shown in Table |I The warehouse and
airport environments are the most complicated for planning
algorithms, both due to their size and their layout with high-
traffic main roads.

Property Office Warehouse Airport
Terminal

Size

Width 21.53m 22.16 m 282.22m

Height 12.05m 27.07m 64.35m

Navigation graph

Vertices 29 54 210

Edges 32 59 211

Occupancy grid

Cells total 1,025 3,009 105,700

Cells passable 333 788 7,645

Cells impassable 692 2,221 98,055

TABLE I: Properties of the environments for 0.4 m grid resolution
and two-way roads.

B. Metrics

There are two sets of metrics. The first set is related to
planning performance and quality: success rate, planning
time, makespan and cost (i.e. path length). The second set is
calculated offline by analyzing recorded data of the execution
of the scenarios:

i) Execution Time: The execution time is the time it took
for all agents to reach their goals. It is bounded by a pre-
configured timeout value; once passed, the simulation will
be terminated.

ii) Number of Goals Reached is the number of robots that
managed to reach the goal before the timeout. In case the
execution time is smaller than the timeout, this number is
equal to the number of agents in the scenario.

config.yaml

+ Robots starts and goals
o number of robots +

Commons

: schedule i
' visualizer :

random seed
o list of starts + goals
+ Planning algorithm to be used

Gazebo
spawn
+

! (Tbuldingmap | !
: server :

building.yaml! gzserver control

robots

« 3D environment (e.g. office,
airport, hospital, ...)
« Navigation graph
o vertices treated as
possible spawn locations
« optional: crowd simulation

gzclient

raytraced
binary costmap

generates

RMF Traffic Editor

starts + goals

Bench Manager

e —path requests

Node
environment

params T

schedule
planning library
(e.g. libMRP)

performancy
metrics

s>
€—robot states-

Nav2
gazebo spawner

N robot instances
map server
amal (* just ground

: truth from sim)
« controller
robot state
publisher

+ planner
I

« recoveries
current state

free fleet
client

« bt navigator
«_waypointfollower | | | oo

! !task dispatcher

path request

free fleet server }—namespacad poses

transformed poses

tf bridge

e collected analytics + statistics
metrics

report generation

Fig. 2: A flow-chart of the proposed architecture. On the left are the components that generate the scenario and set the configurations (i.e.
stars and goals, planners to be used). In the middle are the simulation and navigation frameworks and the benchmark components (Bench
Manager Node and Free Fleet Server). On the right are the RMF components that are used for controlling the fleet and visualization.

Fig. 3: The airport scenario is the largest scenario and allows one
the possibility to test the algorithms for large automated ground
vehicles.

Fig. 4: Left: The office environment provides different homotopy
classes and cluttered spaces. Right: The warehouse environment
has been designed for robots in intralogistic settings.

iii) Minimum Distance Between Two Robots: We always
check the distances between all controlled robots to deter-
mine whether some agents ran into each other, and if not,
how close they got.

iv) Time Blocked per Robot and Total: A robot is consid-
ered blocked if it has not progressed by at least one cell width
within a certain amount of time. For each agent, this metric
calculates using a floating window approach the amount of
time spent blocked.

We use the selected metrics to analyze the algorithms’
performance in the following section.

V. EXPERIMENTS AND RESULTS

To demonstrate the usefulness of the benchmark for
gaining insights into different algorithms and scenarios,
we performed experiments that compare several algorithms,
namely: distributed A* [5], CBS [17], ECBS [2] from

libMultiRobotPlanning [7] and EECBS [11]. For all experi-
ments, we use a differential drive robot model and standard
planners and parameters in Nav2. All experiments ran on a
computer with Intel(R) Xeon(R) W-1270 CPU at 3.40GHz
and 16GB of memory.

A. Comparison of Algorithms across Multiple Scenarios

For the main experiment, we modify four parameters:
the random seed determining the start positions of robots
and goal locations, the map (office and warehouse), the
number of robots (5 and 9) and the algorithm performing
the planning. With 54 different random seeds, this leads
to 864 experiments performed in total, split evenly across
the possible parameter choices. For algorithms supporting
suboptimality, a suboptimality factor of 1.2 was used.

Table [I] shows the success rate of planning a schedule
for a timeout of 60s, grouped by by the map being used,
as there are significant differences in the success rate for
different maps.

Algorithm Office Warehouse
A* 100% 100%
CBS 99% 83%
ECBS 100% 97%
EECBS 100% 100%

TABLE II: Success rate of planning a schedule for a timeout of 60 s,
on a basis of 108 experiments for each combination of algorithm
and map.

CBS gives us an indication of the difficulty of maps: the
99% success rate for the office, decreases to 83% for the
warehouse. The planning time out of 60s was selected as a
high, but still reasonable number for real-life applications.
In some cases, lower planning time may be desired. Some
algorithms, like EECBS, can easily provide those, while
other algorithms, like CBS, take significantly longer.

Next step, we compare how well the plans generated by
the different algorithms perform during execution in the

simulation. The normalized success rate for planning and
execution is based on all scenarios where all algorithms
could calculate a schedule. For the overall success rate, cases
where no schedule was found count as unsuccessful, since
the robots cannot complete the tasks without a schedule.

Table [III| shows the differences between the algorithms.
On the office map, the success rate is high for all algorithms
and the differences are relatively small. On the more difficult
warehouse map, the differences become more distinct. The
highest success rate, both normalized and overall, is obtained
by ECBS. CBS, on the other hand, has a decent outcome in
the normalized success rate, but the lowest overall success
rate. This is due to the fact that CBS is the computationally
heaviest of the four algorithms. In 17 of 108 scenarios, CBS
does not find a schedule within the timeout of 60s. For
ECBS, this only occurs twice and, for A* and EECBS, it is
never the case. While decentralized A* has a slightly lower
normalized success rate on the warehouse map, it is not far
below the other algorithms.

Algorithm Success Rate
Normalized Overall
Office Wareh. Office Wareh.
A* 95% 81% 95% 77%
CBS 93% 84% 92% 70%
ECBS 95% 89% 95% 85%
EECBS 95% 84% 95% 78%

TABLE III: Algorithms’ success rate of completing a scenario
within the timeouts of 60 second (planning) and 5 min (execution).
Data based on 108 experiments, except for warehouse, normalized,
which is based on 91 experiments.

B. Summary

In summary, our experiments suggest that using subopti-
mal algorithms is a viable approach for coordinating multiple
robots. ECBS turned out to be faster than CBS and also
delivered a higher success rate. EECBS is even faster and
never failed to find a solution in our scenarios, at a small
cost in the success rate. Overall, the local recovery feature
offered by Nav2 sometimes may be sufficient to even use
decentralized approaches, such as A*. This is advantageous
in environments that are less static than in our scenarios
since, if robots have to rely even more on local observations
due to a rapidly changing environment, centralized planning
is generally not a good idea.

VI. CONCLUSIONS

In this paper, we introduced MRP-Bench; a novel bench-
mark for multi-agent task assignment and path planning
in realistic environments. The benchmark offers a set of
scenarios and metrics ready to be used together with state-
of-the-art algorithms. Its architecture has been designed
such that more scenarios or additional robot models can
be integrated with little effort. We provide interfaces to
the most common frameworks for robot simulation, nav-
igation and multi-robot planning. In our preliminary ex-
periments, we were able to demonstrate that data gath-
ered using this benchmark allows us to judge the suitabil-
ity of multi-agent algorithms for different scenarios. By

making our benchmark open source (https://github.
com/boschresearch/mrp_bench), we hope that the
research community will use it to evaluate novel algorithms
and scenarios in the field of multi-robot planning. We warmly
welcome contributions to this project.

REFERENCES

[1] Welcome to Flatland. https://flatland.aicrowd.com/
intro.html. Accessed: 2022-3-31.

[2] M. Barer, G. Sharon, R. Stern, and A. Felner. Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem. In Seventh Annual Symposium on Combinatorial Search,
July 2014.

[3] C. Chamzas, C. Quintero-Pena, Z. Kingston, A. Orthey, D. Rakita,
M. Gleicher, M. Toussaint, and L.E. Kavraki. Motionbenchmaker:
A tool to generate and benchmark motion planning datasets. /EEE
Robotics and Automation Letters, 7(2):882-889, 2021.

[4] M. Gebser, P. Obermeier, T. Otto, T. Schaub, O. Sabuncu, v. Nguyen,
and T.C. Son. Experimenting with robotic intra-logistics domains.
Theory and Practice of Logic Programming, 18(3-4):502-519, 2018.

[5] PE.Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100-107, July 1968.

[6] E. Heiden, L. Palmieri, L. Bruns, K.O. Arras, G.S. Sukhatme, and
S. Koenig. Bench-MR: A motion planning benchmark for wheeled
mobile robots. IEEE Robotics and Automation Letters, 6(3):4536—
4543, 2021.

[71 W. Honig. libMultiRobotPlanning. https://github.com/
whoenig/libMultiRobotPlanning. Accessed: 2022-5-30.

[8] O. Kaduri, E. Boyarski, and R. Stern. Algorithm selection for optimal
multi-agent pathfinding. ICAPS, 30:161-165, 2020.

[9]1 L. Kaistner, T. Bhuiyan, T.A. Le, E. Treis, J. Cox, B. Meinardus,
J. Kmiecik, R. Carstens, D. Pichel, B. Fatloun, et al. Arena-Bench:
A benchmarking suite for obstacle avoidance approaches in highly
dynamic environments. IEEE Robotics and Automation Letters,
7(4):9477-9484, 2022.

[10] N. Koenig and A. Howard. Design and use paradigms for Gazebo, an
open-source multi-robot simulator. In 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2004.

[11] J.Li, W. Ruml, and S. Koenig. EECBS: A bounded-suboptimal search
for multi-agent path finding. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), pages 12353-12362, 2021.

[12] S. Macenski, F. Martin, R. White, and J. Ginés Clavero. The Marathon
2: A navigation system. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2020.

[13] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall.
Robot Operating System 2: Design, architecture, and uses in the wild.
Science Robotics, 7(66), 2022.

[14] S. Mohanty, E. Nygren, F. Laurent, M. Schneider, C. Scheller,
N. Bhattacharya, J. Watson, A. Egli, C. Eichenberger, C. Baumberger,
G. Vienken, I. Sturm, G. Sartoretti, and G. Spigler. Flatland-RL :
Multi-agent reinforcement learning on trains, 2020.

[15] Open-RMF. RMF demos. https://github.com/open—rmf/
rmf_demosl Accessed: 2022-5-19.

[16] L. Rocha and K. Vivaldini. Plannie: A benchmark framework for au-
tonomous robots path planning algorithms integrated to simulated and
real environments. In 2022 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 402411, 2022.

[17] G. Sharon, R. Stern, A. Felner, and N.R. Sturtevant. Conflict-based
search for optimal multi-agent pathfinding. Artificial Intelligence,
219:40-66, 2015.

[18] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T. Satish Kumar, E. Boyarski, and R. Bartak.
Multi-agent pathfinding: Definitions, variants, and benchmarks. In
Proceedings of the 12th International Symposium on Combinatorial
Search, SoCS 2019, pages 151-158. AAAI press, 2019.

[19] N. Sturtevant. MAPF benchmarks. https://movingai.com/
benchmarks/mapf.html. Accessed: 2022-3-30.

[20] N. Sturtevant. Benchmarks for grid-based pathfinding. /IEEE Transac-
tions on Computational Intelligence and Al in Games, 4(2):144-148,
2012.

[21] M. Yagiura and T. Ibaraki. The generalized assignment problem and
its generalizations. St. Marys College of Maryland, St. Marys City,
MD, USA, Tech. Rep., 1989.

https://github.com/boschresearch/mrp_bench
https://github.com/boschresearch/mrp_bench
https://flatland.aicrowd.com/intro.html
https://flatland.aicrowd.com/intro.html
https://github.com/whoenig/libMultiRobotPlanning
https://github.com/whoenig/libMultiRobotPlanning
https://github.com/open-rmf/rmf_demos
https://github.com/open-rmf/rmf_demos
https://movingai.com/benchmarks/mapf.html
https://movingai.com/benchmarks/mapf.html

	Introduction
	Related Work
	Benchmark implementation
	Software Architecture
	Starting Up
	Planning and Fleet Management
	Local Navigation
	Data Visualization and Collection

	Evaluation Sub-System
	Scenarios
	Metrics

	Experiments and Results
	Comparison of Algorithms across Multiple Scenarios
	Summary

	Conclusions
	References

