
The MoveIt Benchmark Suite for Whole-Stack Planner Evaluation

Michael Görner∗1, David Pivin∗2, François Michaud2, Jianwei Zhang1

Email goerner@informatik.uni-hamburg.de, david.pivin@usherbrooke.ca

Abstract— Whereas the performance of motion planning
algorithms can be analyzed theoretically, moving toward ap-
plications based on such algorithms requires computational
evaluation on likely scenarios to choose variants that per-
form sufficiently well on the concrete tasks and tune relevant
hyperparameters. Additionally, integrated planning systems
rely on various implementations for sub-features, such as
inverse kinematics solving or collision checking, which have
a significant impact on the overall system performance. As a
result of this complexity, seemingly benign changes to the code
base can entail tremendous changes in overall performance.
The MoveIt Benchmark Suite (MBS) constitutes a unified
benchmarking framework to evaluate the performance of the
whole system stack on unit as well as integration level to
compare configurations and isolate performance changes over
time.

I. INTRODUCTION

With the development and maintenance of a multi-purpose
planning system, complexity grows along multiple dimen-
sions. Among them are techniques and advances in indi-
vidual components, but also advanced interplay between the
subcomponents. As a result, regression testing and quality
assurance, such as continuous integration tests, test cover-
age analysis, and performance benchmarks constitute major
pillars of the development process.

We propose a system specifically targeted at the MoveIt
framework [1] to facilitate community-supported develop-
ment and assess performance-related changes. Many ex-
amples spanning years of maintenance can illustrate the
need for such a system as behavior can regress unnoticed1,
subtle contributions can expose systematic biases with severe
behavioral implications2, and user-based performance evalu-
ations often tend to be biased towards specific use-cases3.

As a multi-component motion planning framework, its
requirements on benchmarks fall into a gap between the idea
of microbenchmarks to time individual code segments, such
as supported prominently by the Benchmark framework [2],
and motion planner benchmark systems such as Robowflex
[3], which provide tooling and metrics to evaluate not just
internal performance of planners, such as their runtime and
memory use, but also external performance, measured in
functions of the generated trajectories.

We provide a benchmark suite tailored to the needs
of the MoveIt project that provides a common ground

∗These authors contributed equally.
1 Universität Hamburg, Germany.
2 Université de Sherbrooke, Canada.
1moveit#197
2moveit#3119
3moveit#2698

Fig. 1. MoveIt Task Constructor [4] integration benchmark with statistics
measured per stage. The benchmark can capture unit-level statistics, such as
IK performance, as part of an advanced integrated task such as Pick&Place.

for unit-level benchmarks such as collision checking or
inverse kinematics (IK), as well as high-level integra-
tion tests with varying scenarios. The MoveIt Benchmark
Suite (MBS) builds in large parts on the Robowflex sys-
tem [3], extending the scope for framework-relevant in-
sights. The project is available at https://github.
com/captain-yoshi/moveit_benchmark_suite .

II. BENCHMARK CATEGORIES

MBS benchmarks comprise a combination of 1) robot
descriptions, 2) environments, and 3) meta parameters, such
as repetition count per trial. Additionally, each benchmark
type supports a set of parameters related to the concrete type.

https://github.com/ros-planning/moveit/issues/197
https://github.com/ros-planning/moveit/pull/3119
https://github.com/ros-planning/moveit/pull/2698
https://github.com/captain-yoshi/moveit_benchmark_suite
https://github.com/captain-yoshi/moveit_benchmark_suite


A noteworthy extension over other systems includes the abil-
ity to describe environment scenes through multiple mech-
anisms, including urdf/xacro representations and clutter-
generators with parameterized expected collision state.

The output metrics of each benchmark type vary as well
but always include meta-data such as machine information,
versions of relevant package dependencies, or git commits
where available. Thus, benchmark runs can also be easily
filtered/plotted/compared together across system configura-
tions and dependency versions. As user contributions origi-
nate from various system configurations, this represents an
essential capability.

A. MTC Tasks

The MoveIt Task Constructor (MTC) [4] provides mech-
anisms and structure to describe task-level plans and solve
them in computationally independent steps using multiple
backends. This explicitly modular structure makes it an
ideal candidate to benchmark individual components, such as
IK generators, different motion planners, and data structure
operations in a complete and realistic scenario. At the same
time, it allows a benchmark to directly access the effect of
different configurations on extended manipulation planning.
Figure 1 illustrates the traditional Pick&Place task for a can
and associated benchmark statistics for the component-wise
computation time.

Each stage provides general metrics for computation time
and success/failure but can also report individual statistics
(described in the following sections). The overall task also
provides metrics for solution count, cost, and others.

B. Motion Planning Pipelines

This type of benchmark refers to the regular evaluation
of motion planner performance as targeted specifically by
existing systems such as Robowflex [3], and PlannerArena
[5]. Parameters include algorithm-specific options, timeouts,
collision detectors, IK solvers, and post-processing pipelines.
Specifically, the type of goal and path constraints passed
to the planner also play an essential role and can dras-
tically affect benchmark coverage and behavior. Whereas
some optimization-based trajectory solvers, such as TrajOpt
[6], can handle arbitrary differentiable cost functions, many
planners discriminate pose constraints from other constraint
types in order to pass them to fast special-purpose IK solvers.
Such constraint handling invokes very different mechanisms
in the background and it is reasonable to benchmark them
separately. Related regressions in the MoveIt code base were
recently validated through added coverage in MBS4.

Lastly, a variable specific to frameworks and not relevant
for plain algorithm profiling is the choice of entry point
for planning. Depending on the subsystems used, MoveIt
provides different C++ and ROS interfaces for planning,
as well as different interfaces for other components. MBS
explicitly adds the possibility to benchmark planning over
different entry points.

4moveit#3119

Fig. 2. Cluttered benchmark scene with 100 boxes without collisions
around a Panda robot: (top) Randomized collision checking benchmark
scene with cluttered boxes that do not collide with the robot. The scene can
be described through box primitives or triangulated mesh representations of
the boxes; (bottom) Performance of MoveIt FCL (0.6.1) and Bullet (2.88)
integration w.r.t. both representations.

Various metrics are established to characterize path and
motion planners, including but not limited to time to first
solution, memory footprint, path length in joint and Cartesian
space, clearance to obstacles, and path smoothness. As MBS
borrows heavily from Robowflex in this benchmark category,
supported metrics can be imported from there.

C. Collisions

Collision detection is a critical component of sampling-
based planning and in most motion planning applications, the
majority of computation time is spent on it [7]. Although the
predominant Gilbert, Johnson, and Keerthi’s (GJK) algorithm
was published decades ago [8], impressive improvements to
it are still published [9]. Additionally, the exact integration
of each algorithm into the planner plays a crucial role as less
efficient creation of data structures and caching behavior can
hamper runtime performance.

MBS benchmarks for collision checking expose the exist-
ing MoveIt interface parameters, including binary detection
and minimal distance computation, as well as the number
of required collision pairs and contact points. As cluttered
randomized scenes can be generated with a known number
of collisions, the parameters allow for separate benchmarks
that can force more or less effective use of broad-phase

https://github.com/ros-planning/moveit/pull/3119


collision checking, accessing separate aspects of the collision
checker. The benchmarks generate metrics for computation
times (measured in checks per second) but also report contact
counts in order to validate correctness and completeness.

Figure 2 presents a cluttered benchmark scene with 100
boxes without collisions around a Panda robot. An example
benchmark configuration compares the exact scene using a
primitive and a mesh representation for the oriented box
collision objects. As no collision exists, a checker has
to perform narrow-phase collision checks for each object
inside the bounding volume hierarchy of the robot. Using
MoveIt’s Bullet integration, the primitive box representation
(parameterized as pose and three scalars) can be queried
significantly faster than the box meshes with an approximate
factor of ∼2. Using FCL (Flexible Collision Library) on the
other hand, the mesh representation strictly outperforms the
primitive representation. This result is highly unexpected and
currently being investigated5.

D. Hyperparameters

Motion Planner performance depends significantly on hy-
perparameters and previous research proposed frameworks
to find suitable parameter sets across problem classes [10].
Using MBS, such optimization can be considered across the
whole stack. However, as the repeated evaluation of more
complex benchmarks can require excessive resources, the
scope of such an investigation must be limited.

As an example, Fig. 3 presents the convex mesh approxi-
mation of a UR3 robot generated from detailed meshes. As
convex meshes can enable vital optimizations in collision-
checking algorithms, it is often preferable to approximate
mesh geometry through convex meshes at the cost of lost
details and overapproximation. Using the volumetric hier-
archical approximate convex decomposition approach [11],
each link mesh can automatically be approximated through a
varying maximum number of convex shapes. Some resulting
representations are shown in the top part of the figure.
These representations can be readily added to arbitrary
MBS benchmarks, e.g., a reach-to-grasp task based on the
Box and Blocks Test [12] and evaluate recorded metrics.
As expected, the average planning time increases as the
number of mesh faces in the reconstructions goes up, with
an effective speedup of factor 2 between the detailed mesh
approximation and the coarsest approximation. Depending
on the relevant task, these results could be readily evaluated
against opposing metrics, such as the number of reachable
objects inside the box to select a task-specific trade-off.

III. SUMMARY

The MoveIt Benchmark Suite implements a benchmark
system that aims at framework development. The system
is modular through a plugin mechanism and well-specified
entry points in the form of roslaunch files. It features
microbenchmark options for individual code paths, as well
as motion and task-level motion planning benchmarks. The

5moveit#3202

Fig. 3. Convex mesh approximation of a UR3: (top) Increasingly detailed
convex decompositions and original meshes of a UR3 robot in an established
Box and Blocks Test scenario [12]; (bottom) Planning times for a reaching
motion planning request into the box. As expected, average planning times
increase with more complex collision geometry.

combination allows to point out regressions and improve-
ments on different levels of complexity to support mainte-
nance. In future work, we plan to improve the reproducibility
of recorded benchmarks. As metadata includes versions of
dependencies, in principle, it is possible to generate con-
tainerized environments in a partially automated fashion to
replicate benchmark runs across different hardware. It is
planned to expand the set of benchmarks through plugins
over time to increase coverage and help evaluate various
components of the system.

IV. ACKNOWLEDGEMENT

This project was made possible as a part of Google Sum-
mer of Code 2021. Additionally, it is partially funded by the
German Research Foundation (DFG), the National Science
Foundation of China in project Crossmodal Learning, TRR-
169, and NSERC (Natural Sciences and Engineering Re-
search Council) of Canada, CoRoM (Collaborative Robotics
for Manufacturing) CREATE Program (# 498011-2017).

REFERENCES

[1] David Coleman et al. “Reducing the barrier to entry
of complex robotic software: A MoveIt! case study”.
In: Journal of Software Engineering for Robotics 5.1
(May 2014), pp. 3–16. URL: http://moveit.
ros.org.

https://github.com/ros-planning/moveit/issues/3202
http://moveit.ros.org
http://moveit.ros.org


[2] Various. Benchmark: a microbenchmark support li-
brary. 2022. URL: https : / / github . com /
google/benchmark (visited on 09/23/2022).

[3] Zachary Kingston and Lydia E. Kavraki. “Robowflex:
Robot motion planning with MoveIt made easy”.
In: IEEE/RSJ International Conference on Intelligent
Robots and Systems. Oct. 2022.

[4] Michael Görner et al. “MoveIt! Task constructor
for task-level motion planning”. In: IEEE Interna-
tional Conference on Robotics and Automation. 2019,
pp. 190–196. DOI: 10 . 1109 / ICRA . 2019 .
8793898.

[5] Mark Moll, Ioan A. Şucan, and Lydia E. Kavraki.
“Benchmarking motion planning algorithms: An ex-
tensible infrastructure for analysis and visualization”.
In: IEEE Robotics & Automation Magazine 22.3 (Sept.
2015), pp. 96–102. DOI: 10.1109/MRA.2015.
2448276.

[6] John Schulman et al. “Motion planning with se-
quential convex optimization and convex collision
checking”. In: The International Journal of Robotics
Research 33.9 (2014), pp. 1251–1270. DOI: 10 .
1177/0278364914528132. eprint: https://
doi . org / 10 . 1177 / 0278364914528132.
URL: https : / / doi . org / 10 . 1177 /
0278364914528132.

[7] Steven M. LaValle. Planning Algorithms. Available at
http://planning.cs.uiuc.edu/. Cambridge, U.K.: Cam-
bridge University Press, 2006, p. 209.

[8] Elmer G. Gilbert, Daniel W. Johnson, and Sathiya S.
Keerthi. “A fast procedure for computing the distance
between complex objects in three-dimensional space”.
In: IEEE Journal on Robotics and Automation 4.2
(1988), pp. 193–203. DOI: 10.1109/56.2083.

[9] Louis Montaut et al. “Collision detection acceler-
ated: An optimization perspective”. In: Proceedings of
Robotics: Science and Systems. New York City, NY,
USA, June 2022. DOI: 10.15607/RSS.2022.
XVIII.039.

[10] Mark Moll et al. “HyperPlan: A framework for mo-
tion planning algorithm selection and parameter opti-
mization”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2021, pp. 2511–2518.

[11] Khaled Mamou. “Volumetric hierarchical approximate
convex decomposition”. In: Game Engine Gems 3. AK
Peters, 2016, pp. 141–158.

[12] Andrew S. Morgan et al. “Benchmarking cluttered
robot pick-and-place manipulation with the box and
blocks test”. In: IEEE Robotics and Automation Let-
ters 5.2 (2020), pp. 454–461. DOI: 10.1109/LRA.
2019.2961053.

https://github.com/google/benchmark
https://github.com/google/benchmark
https://doi.org/10.1109/ICRA.2019.8793898
https://doi.org/10.1109/ICRA.2019.8793898
https://doi.org/10.1109/MRA.2015.2448276
https://doi.org/10.1109/MRA.2015.2448276
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1109/56.2083
https://doi.org/10.15607/RSS.2022.XVIII.039
https://doi.org/10.15607/RSS.2022.XVIII.039
https://doi.org/10.1109/LRA.2019.2961053
https://doi.org/10.1109/LRA.2019.2961053

	INTRODUCTION
	Benchmark Categories
	MTC Tasks
	Motion Planning Pipelines
	Collisions
	Hyperparameters

	SUMMARY
	ACKNOWLEDGEMENT

