
Towards Benchmarking Sampling-Based
Kinodynamic Motion Planners with ML4KP

Edgar Granados∗, Aravind Sivaramakrishnan∗, and Kostas E. Bekris.

Abstract— This work introduces a benchmarking framework
for sampling-based kinodynamic planning algorithms, built
on top of ML4KP, a C++ library for efficient kinodynamic
planning that allows to incorporate learned primitives for
planning purposes. ML4KP is fast, has minimal dependencies,
and provides implementations of state-of-the-art kinodynamic
planners that can be used with minimal configuration for
the included systems. In contrast to other motion planning
libraries, ML4KP allows to directly generate solutions for dy-
namic systems, without the need for additional post-processing
of obtained solution paths. ML4KP is intended to be used
by the robot learning community that seek to use sampling-
based motion planners, as well as members of the motion
planning community interested in integrating machine learn-
ing tools. Project website: https://sites.google.com/
scarletmail.rutgers.edu/ml4kp/

I. INTRODUCTION

Motion planning for robotic systems with significant
dynamics is challenging. Often, there is no local planner
available, and the only primitive to explore the state space is
forward propagation of controls. Tree sampling-based motion
planners (SBMPs) have been developed [1], some of which
achieve asymptotic optimality (AO) [2]–[5] by propagating
random controls during each iteration.

Creating an efficient motion planning pipeline for a new
robot or a dynamical system requires effectively evaluating
different planning components and framework. The imple-
mentation of these planners must therefore be efficient, in-
terpretable, and reliable. Similarly, if the user is prototyping
a new planner, or testing a new implementation of a planner’s
components (like a distance function), it is useful to quickly
benchmark its performance against the state-of-the-art. To
test the generalization capability of the new approach, the
planner must be applicable to different dynamical systems
across a variety of clear and well-defined motion planning
benchmarks.

To the best of the authors’ knowledge, however, many
efforts in the related literature rely on either outdated or
suboptimal implementations of AO kinodynamic planners,
which limits the ability to effectively evaluate performance.
Many research papers also define their own benchmarks,
thus making it difficult to judge the performance of new
methods in a standardized manner. This extended abstract
describes an initial effort to address these shortcomings. It
proposes a benchmarking framework built on top of ML4KP,
a lightweight, fast software library built by the authors with

*The first two authors contributed equally to this work. The authors are
with the Dept. of Computer Science, Rutgers University, NJ USA 08854.
E-mail: {eg585, as2578, kb572}@rutgers.edu

Fig. 1: (Left) Solution paths for different vehicular systems and
environments. (Right) Trees for AORRT and DIRT planners.

a focus on integrating sampling-based kinodynamic planners
with machine learning primitives.

Existing motion planning benchmarks, such as BARN [6],
Bench-MR [7], and MOTIONBENCHMAKER [8] are built
on top of existing motion planning libraries, such as the
Open Motion Planning Library (OMPL) [9] and MoveIt!
[10]. Although they are well suited for classical kinematic
motion planning problems, they lack features useful for
kinodynamic planning. OMPL and MoveIt! do not focus on
computing time-optimal kinodynamic trajectories, and do not
use execution duration as a cost function to be minimized.
The primary design choice in OMPL is to plan for kinematic
systems, treating robot dynamics as an extension. ML4KP, on
the other hand, is built for systems with significant dynamics.

In addition, there has been significant interest recently in
applying machine learning techniques to improve the prac-
tical efficiency of motion planning algorithms. ML4KP was
designed with the intention of integrating machine learning
with motion planning. The modular and functional structure
of ML4KP allows a user to integrate learned components into
the planner alongside traditional implementations of existing
methods.

II. PRELIMINARY MATERIAL

A. Notation

Let X ⊂ Rn be the state space, Xfree ⊂ X the obstacle-
free space and the obstacle space Xobs the complement
of Xfree, i.e. Xobs = X \ Xfree. The control space is
U ⊂ Rm. Given the state at time t x(t) ∈ X and a

https://sites.google.com/scarletmail.rutgers.edu/ml4kp/
https://sites.google.com/scarletmail.rutgers.edu/ml4kp/

control u(t) ∈ U, a time-invariant dynamical system has the
form ẋ(t) = f(x(t), u(t)) with some initial state x(0). A
plan Υ is the sequence of controls u(0), u(1), . . . , u(T − 1)
executed in order, inducing a valid trajectory π : [0, T] 7→
Xfree. The cost of a trajectory is given by cost(π) =∫ T

0
g(π(t),Υ(t))dt where g : X×U 7→ R+ is a cost deriva-

tive. cost has to be a monotonically increasing function.

B. Kinodynamic Motion Planning

Given a dynamical system at some initial state x(0) ∈
Xfree, a goal region XG ⊂ Xfree, the feasible kindoynamic
motion planning problem is to find a plan of some duration
T such that π(T) ∈ XG. That is, a trajectory is found that
drives the system from the initial state to the goal region.
An algorithm is probabilistically complete if the probability
of finding a solution (if one exists) converges to 1 as time
budget allowed goes to infinity.

The optimal kinodynamic motion planning problem is a
special case of the feasible problem, where the solution plan
Υ∗ has the minimal cost(π) over the set of all possible
plans. An algorithm is said to be asymptotically optimal (AO)
if the cost of the solution plan converges to cost(Υ∗) as
time goes to infinity.

III. ML4KP ARCHITECTURE

ML4KP consists of two core modules: Simulation and
Planning. These modules interact together to implement
different dynamical systems and kinodynamic planners.

A. Ground Truth Simulation

The fundamental abstraction in the simulator is the
prx::system t (system) class. The system class uses the
prx::space t (space) abstraction, which provides a way for
users to define abstract spaces (i.e., state space or control
space). This also allows to deal with non-Euclidean spaces.
Each space dimension can be Euclidean, rotational, or dis-
crete. A prx::space point t is created by a space, and can
represent states or controls in the system class. Every system
has a state and an input control space associated with it.

The system class also implements a compute control
method that receives a control and potentially manipulates it.
The propagate functionality implements the forward dynam-
ics propagation for a system according to its dynamics. This
is achieved either through numerical methods, or through a
black-box physics engine.

The prx::plant t (plant) class extends the abstract system
and associates it with a set of rigid bodies, each with
their own geometric configuration. Additionally, for systems
simulated using analytical expressions of their dynamics, a
definition for the compute derivative function is needed to
compute the forward propagation and update the geometries
for the resulting state.

Finally, the prx::world model t (world model) class is
used to represent the physical world as it is observed or
known to the motion planner. The world model can be used
to define multiple contexts for the same physical world. Each
context consists of a prx::system group t (system group) and

a prx::collision group t (collision group). Collision detection
is implemented using PQP [11], [12].

B. Functional Motion Planning

A planner contains the main logic of the algorithm while
the planner specification includes parameters as well as
functions that have a default implementation. The functions
are called during the execution of the planner, modifying the
operation of the algorithm. Finally, the planner query spec-
ifies the parameters and functions that define the planning
problem and determine its solution.

Algorithm 1: Tree-SBMP
1 Initialize planner tree rooted at start state
2 while stopping criterion is not met do
3 Select a node on the planner tree to expand
4 Compute a control to be applied from that state
5 Propagate the dynamics to obtain a trajectory
6 if trajectory is valid then
7 Add trajectory as an edge to the tree
8 if trajectory terminates in goal region then
9 Mark a solution has been found

10 end
11 end
12 end

The generic tree sample-based motion planning algorith-
mic framework is shown in Algorithm 1. Line 4-5 to-
gether form a planner’s expand function, with the control
computed via its sample plan function. Line 9 uses a
planner’s goal check implementation to check whether
the end state of a trajectory fulfills the goal criteria. Highly
configurable algorithms are achieved by defining key parts
of the algorithms as functions - either as auxiliary functions,
or specified through the planner’s query and specification.

Planner Memory Parameters Informed
AORRT [5] ++ − ✗
SST [2] + ++ ✗
DIRT [4] + − ✓

TABLE I: AO planners implemented in ML4KP and their proper-
ties. Memory indicates the memory usage of each planner for high-
dimensional planning problems. Parameters indicates the amount
of parameter tuning for finding good solutions. Informed planners
make use of guidance, e.g. in the form of a heuristic.

ML4KP has optimized implementations of the AO motion
planning algorithms shown in table I. These algorithms
can be executed out of the box with minimum parameter
specifications. By changing appropriate functions, additional
functionality can be provided. For instance,

• A strategy for propagating multiple controls out of a
selected states, similar to RRT-Blossom [13], can be
implemented by changing the implementations of the
expand function.

• A cost map over the planning environment can be used
to specify costs [14] inside the cost function of the
planning problem.

• A custom goal check can be used to guarantee the
convergence of the system [15].

C. Benchmark Definitions

ML4KP provides a simple interface to benchmark AO
kinodynamic planners on a new planning problem for a
dynamical system. It is assumed that for a given dynamical
system, the equations that govern its motion and configura-
tions of its underlying rigid bodies are fixed. The following
parameters need be to be specified as part of each benchmark.

• State and Control space bounds: minimum and maxi-
mum values of each variable that describes the system’s
dynamics.

• Start and Goal states: initial condition of the system
and a desired goal, that are guaranteed to be within the
state space bounds.

• Minimum and Maximum propagation step size:
After computing a control (line 4 of Alg 1), the prop-
agation duration will typically be uniformly at random
sampled from these bounds.

• Distance function: While selecting the next node to
expand (line 3 of Alg 1), all AO planners use a nearest
neighbor query that calls a distance function for the
system. For informed planners (like DIRT), a heuristic
function may be defined as well.

• Planner-specific parameters like the blossom number
for DIRT, or selection radius for SST.

• Goal check function: A function that returns true iff.
the state passed as the argument satisfies the desired
goal criteria.

• Environment file: A file that specifies the dimensions
and configurations of the static obstacles in the planning
environment. ML4KP uses the YAML library to define
different planning environments.

IV. EXPERIMENTS WITH ML4KP

The tools provided by ML4KP allow the users to compare
various kinodynamic planners on different scenarios with
alternative evaluation criteria. This section describes experi-
ments performed with ML4KP and their results. The software
is available in the ML4KP GitHub repository.

A. Planners and Evaluation Metrics

Following related work [16], the following statistics are
reported for every planner:

i) Success Rate (p): The ratio of trials where a solution
was found within the planning budget,

ii) Average time taken to find the solution across trials
where a solution was found (tst),

iii) Average cost of the first found solution across all trials
where a solution was found (Jst),

iv) Cost of the final solution found within the planning
budget (Jf), averaged across all trials where a solution
was found.

On some benchmark environments, multiple starts and
goals may be sampled to test the robustness of the planner.
To account for the difficulty of different planning problems,
path costs can be normalized by dividing by the best path
cost found for a problem across any planner. Similarly, for
reporting average time / planning iterations taken to found
a solution, the normalization factor can be the maximum
time/number of iterations required by any planner to find its
first solution. Other metrics that can be measured include the
number of nodes in the tree as a function of time/number of
iterations, number of invalid states encountered, etc.

B. Dynamical systems and Environments

Each planner’s performance is evaluated on the following
proposed benchmarks:

i) First-order (dim(X) = 3) and second-order (dim(X) =
5) unicycles (dim(U) = 2, Eqs (13.18) and (13.46) from
[17]) are evaluated on the kinodynamic motion planning
benchmark originally presented in earlier work [16].

ii) First-order (dim(X) = 3) and second-order (dim(X) =
5) differential drive vehicles (dim(U) = 2) are evaluated
on the Warehouse polygon environment from Bench-
MR [7].

iii) A first order omnidirectional robot with Mecanum
wheels (developed in [18]) is evaluated on the most
difficult BARN environment [6].

iv) A two-link acrobot (dim(X) = 4, dim(U) = 1, from
[19]) is tasked with swinging up to the upright pose in
the presence of obstacles (Boxes).

Solutions found by the different planners on each of the
benchmark classes are visualized in Fig 2. The planning
results are presented in Table II. For the vehicular systems,
the DIRT algorithm uses the default implementation of a
heuristic, which is the 2D Euclidean distance divided by the
maximum velocity. Although this heuristic is admissible, it
may lead to suboptimal performance.

Fig. 2: The ML4KP library includes vehicular and non-vehicular
systems. (Left) An example of an SST tree for a vehicular system.
The acrobot (right) is a challenging system for low torque values
within the presence of obstacles

C. Integration with machine learning primitives

Beyond evaluating traditional properties important for
SBMPs (fast, memory-efficient, anytime, probabilistically
complete and asymptotic optimal implementations), ML4KP
is also designed to leverage the practical benefits obtained
by integrating machine learning tools. The functional design
of ML4KP allows users to wrap machine learning methods

System Instance SST AO-RRT 2 DIRT
p tst[s] Jst[s] Jf [s] p tst[s] Jst[s] Jf [s] p tst[s] Jst[s] Jf [s]

1 Unicycle (FO) Kink (60) 0.1 0.77 38.9 38.9 1.0 1.38 40.71 40.07 0.9 8.87 45.28 37.08
2 Unicycle (SO) Kink (300) 0.8 76.15 68.91 67.9 1.0 0.441 48.32 46.67 1.0 6.33 55.71 39.22
3 DiffDrive (FO) Bench-MR (60) 1.0 5.74 97.22 46.7 1.0 0.04 106.98 105.15 1.0 0.91 101.82 69.32
4 DiffDrive (SO) Bench-MR (60) 1.0 6.23 48.49 39.55 1.0 0.18 49.61 49.43 1.0 4.69 66.49 60.21
5 Omnirobot (FO) BARN (10) 1.0 1.98 15.39 11.14 1.0 0.31 11.79 10.84 1.0 1.53 14.66 8.71
6 Acrobot Boxes (60) 0.4 10.69 3.14 3.13 1.0 0.04 1.58 1.33 0.6 21.32 3.43 3.43

TABLE II: Benchmarking results comparing each planner (SST, AO-RRT 2 and DIRT) on the metrics described in Section IV.
Best values are highlighted in bold. For each instance, the maximum planning time (in seconds) is indicated within
parentheses.

and use them without changing the underlying planner’s
source code (for e.g., using a learned distance function or
a heuristic).

Fig. 3: Solutions paths found by the DIRT algorithm for: (left)
DiffDrive (SO) system on a map of Berlin from [20], and (right) a
physically simulated Segway navigating a complex terrain. In both
approaches, an informed machine-learning based node expansion is
integrated in ML4KP to find high-quality (low cost) solutions fast.

Fig 3 illustrates an example of an implementation of
the DIRT algorithm where a controller trained in a flat,
obstacle-free environment computes the control after a node
is selected for expansion. In environments with obstacles or
terrain features, informed local goals are generated as input
to the controller [21], [22].

V. DISCUSSION AND FUTURE WORK

ML4KP provides a fast, lightweight framework to bench-
mark state-of-the-art sampling-based kinodynamic planners
on new problems, characterized by a dynamical system
operating in an environment. Ongoing work includes the
benchmarking of SBMPs on high-dimensional dynamical
systems, including physics simulated robots. Further devel-
opment is also required for considering planning environ-
ments with dynamic obstacles, as well as dynamical systems
with epistemic and/or aleatoric uncertainty.

REFERENCES

[1] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” IJRR, vol. 20, no. 5, pp. 378–400, 2001.

[2] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal
sampling-based kinodynamic planning,” IJRR, vol. 35, no. 5, pp. 528–
564, 2016.

[3] K. Hauser and Y. Zhou, “Asymptotically optimal planning by feasible
kinodynamic planning in a state–cost space,” T-RO, vol. 32, no. 6, pp.
1431–1443, 2016.

[4] Z. Littlefield and K. E. Bekris, “Efficient and asymptotically optimal
kinodynamic motion planning via dominance-informed regions,” in
IROS, 2018.

[5] M. Kleinbort, E. Granados, K. Solovey, R. Bonalli, K. E. Bekris, and
D. Halperin, “Refined analysis of asymptotically-optimal kinodynamic
planning in the state-cost space,” in ICRA, 2020.

[6] D. Perille, A. Truong, X. Xiao, and P. Stone, “Benchmarking metric
ground navigation,” in 2020 IEEE International Symposium on Safety,
Security and Rescue Robotics (SSRR). IEEE, 2020.

[7] E. Heiden, L. Palmieri, L. Bruns, K. O. Arras, G. S. Sukhatme, and
S. Koenig, “Bench-mr: A motion planning benchmark for wheeled
mobile robots,” RA-L, vol. 6, no. 3, 2021.

[8] C. Chamzas, C. Quintero-Pena, Z. Kingston, A. Orthey, D. Rakita,
M. Gleicher, M. Toussaint, and L. E. Kavraki, “Motionbenchmaker:
A tool to generate and benchmark motion planning datasets,” RA-L,
vol. 7, no. 2, pp. 882–889, 2021.

[9] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, https://ompl.kavrakilab.org.

[10] D. Coleman, I. A. Sucan, S. Chitta, and N. Correll, “Reducing
the barrier to entry of complex robotic software: a moveit!
case study,” CoRR, vol. abs/1404.3785, 2014. [Online]. Available:
http://arxiv.org/abs/1404.3785

[11] S. Gottschalk, M. C. Lin, and D. Manocha, “Obbtree: A hierarchical
structure for rapid interference detection,” in Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques,
1996, pp. 171–180.

[12] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” Technical Report TR99-018,
Department of Computer Science, University of . . . , Tech. Rep., 1999.

[13] M. Kalisiak and M. van de Panne, “Rrt-blossom: Rrt with a local
flood-fill behavior,” in ICRA, 2006.

[14] L. Jaillet, J. Cortes, and T. Simeon, “Transition-based rrt for path
planning in continuous cost spaces,” in IROS, 2008.

[15] E. R. Vieira, E. Granados, A. Sivaramakrishnan, M. Gameiro, K. Mis-
chaikow, and K. E. Bekris, “Morse graphs: Topological tools for
analyzing the global dynamics of robot controllers,” WAFR, 2022.

[16] W. Hoenig, J. Ortiz-Haro, and M. Toussaint, “db-a*: Discontinuity-
bounded search for kinodynamic mobile robot motion planning,”
IROS, 2022.

[17] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[18] E. Granados, A. Boularias, K. Bekris, and M. Aanjaneya, “Model iden-
tification and control of a low-cost mobile robot with omnidirectional
wheels using differentiable physics,” in ICRA, 2022.

[19] M. W. Spong, “The swing up control problem for the acrobot,” IEEE
control systems magazine, vol. 15, no. 1, pp. 49–55, 1995.

[20] N. Sturtevant, “Benchmarks for grid-based pathfinding,” Transactions
on Computational Intelligence and AI in Games, vol. 4, no. 2, pp. 144
– 148, 2012. [Online]. Available: http://web.cs.du.edu/∼sturtevant/
papers/benchmarks.pdf

[21] A. Sivaramakrishnan, E. Granados, S. Karten, T. McMahon, and K. E.
Bekris, “Improving kinodynamic planners for vehicular navigation
with learned goal-reaching controllers,” in IROS, 2021.

[22] T. McMahon, A. Sivaramakrishnan, K. Kedia, E. Granados, and K. E.
Bekris, “Improving kinodynamic planners for vehicular navigation
with learned goal-reaching controllers,” in IROS, 2022.

https://ompl.kavrakilab.org
http://arxiv.org/abs/1404.3785
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf

	Introduction
	Preliminary Material
	Notation
	Kinodynamic Motion Planning

	ML4KP Architecture
	Ground Truth Simulation
	Functional Motion Planning
	Benchmark Definitions

	Experiments with ML4KP
	Planners and Evaluation Metrics
	Dynamical systems and Environments
	Integration with machine learning primitives

	Discussion and Future Work
	References

