
The MiniCity: A 1/10th Scale Evaluation Platform for Testing

Autonomous Urban Perception and Planning

Noam Buckman1,†, Alex Hansen1,†, Sertac Karaman2 and Daniela Rus1

I. INTRODUCTION

A major impediment to the adoption of autonomous ve-

hicles (AVs) is the need to fully evaluate and test the full

autonomous vehicle hardware and software stack in realistic

traffic scenarios. This is especially challenging for perception

tasks, such as object detection and localization, which impact

various components of the full AV stack and depend heavily

on sensor configuration. Recent work [1], [2] highlight the

need for evaluating perception algorithms in the context of

both the whole autonomous system and specific downstream

tasks, such as obstacle avoidance, which is difficult to ac-

complish using existing datasets or simulators. In this work,

we propose the MiniCity, a miniature autonomous vehicle

platform for evaluating perception algorithms in a city-wide,

multi-vehicle scale. In the MiniCity, 1/10th scale vehicles are

equipped with full-scale hardware – Lidar, stereo cameras,

and IMUs – and a full autonomy software stack – allowing

researches to evaluate their perception algorithm in isolation

and the impact to the vehicle’s quality of autonomous driv-

ing.

Current tools for evaluating autonomous vehicle software

and hardware consists of datasets, simulation, or full-scale

vehicles. The high-cost and inherent safety risk of full-scale

vehicles mean that most full-scale testing is limited to closed

course testing or tasks with limited interactions with other

vehicles. Increasingly, researchers are relying on datasets

or simulators for benchmarking the performance of their

algorithms. Datasets [3], [4], [5], [6], [7], [8] provide high-

fidelity sensor recordings and are thus a popular choice for

evaluating perception tasks such as object pose estimation

and lane detection; however, they can not evaluate the im-

pact on downstream modules such as trajectory planning or

collision avoidance. Simulators [9], [10], [11], [12] can allow

for evaluating the full AV stack; however, they fall victim to

the sensor sim-to-real gap and incur high computational cost

for simulating multi-vehicle interactions. Miniature robot

platforms [13], [14], [15], [16], [17] provide a middle ground

in evaluation platforms, providing researchers a lower cost

A recently published extended journal version of this work is accessible
at https://www.mdpi.com/1424-8220/22/18/6793

This work was supported by the Toyota Research Institute (TRI). This
article solely reflects the opinions and conclusions of its authors and not
TRI or any other Toyota entity.

† equal contribution
1Computer Science and Artificial Intelligence Laboratory, Massachusetts

Institute of Technology, Cambridge, MA 02139, USA [nbuckman,

hansena, rus] at mit.edu
2Laboratory of Information and Decision Systems, Massachusetts Insti-

tute of Technology, Cambridge, MA 02139, USA sertac@mit.edu

(a) MiniCity (b) RACECAR

Fig. 1: The MiniCity.

option that can enable real hardware testing while measuring

an algorithm’s impact on both the individual task (object

detection) and the impact on the rest of the autonomy stack

(such as collision avoidance).

The MiniCity bridges the gap between real-world deploy-

ment and simulated testing. The MiniCity’s 1/10th scale

urban setting consists of small-scale houses, roads, traffic

lights, and fully autonomous vehicles, enabling researchers

to test within a city setting without the dangers of real world

testing. In this work, we highlight the MiniCity’s ability to

evaluate a vehicle’s perception software and hardware, by

deploying baseline perception tasks such as object detection

and localization in interactive scenarios with multiple au-

tonomous vehicles.

II. MINICITY PLATFORM DESCRIPTION

A. Physical Layout

The MiniCity is a 1/10th scale evaluation platform con-

sisting of scaled houses, roads, and traffic infrastructure,

multiple intersections for interactive scenarios, and external

motion capture for evaluating the vehicle performance. The

MiniCity’s roads are made from durable 2ft wide x 1/4” thick

rubber gym mats with gaphers masking tape used for lane

lines. Doll houses and synthetic grass are placed along the

road to add realistic scenery and occlusions. The MiniCity’s

photorealisim allows us to deploy perception algorithms in

environments that appear similar to deployment. The overall

size of the MiniCity can expand to multiple intersections,

with an overall length of 40 ft, or as short as 16 ft with a

single intersection. The small size of the MiniCity relative

to a full-scale city allows for experiments with various

topological and environmental changes. All physical assets

can be re-arranged for different road structures, weather

settings, and scenery types.

(a) (b)

Fig. 2: MiniCity Infrastructure. a) The Minicity setup with

traffic lights, houses, and optitrack. b Intelligent traffic

manager

B. Ground Truth Position and GPS-Spoofing from Motion

Capture

Ground truth localization is both necessary for evaluating

localization and perception algorithms, and by providing

simulated GPS signal to mimic outdoor environments. The

MiniCity, as seen in Fig. 2, includes a system of 10 Optitrack

PrimeX 41 motion capture cameras deployed on portable

tripods. The flexible setup allows for easily moving to

new indoor and outdoor spaces. The Optitrack’s MOTIVE

software tracks 8-12 passive reflective markers that are

rigidly attached to each RACECAR, and publishes pose

and orientation at 120Hz. Additionally, the motion capture

system publishes a spoofed GPS signal to mimic GPS signals

found in the real world using Robot Operating System’s

(ROS) standard NavSatFix GPS message type. The GPS-

spoofing module ingests the millimeter precise pose estimate

of the vehicles and publishes a noisy position measurement

with various types of noise, such as Gaussian, white, and

brown noise distributions.

C. Mapping the MiniCity

We provide maps of the MiniCity that are used for evaluat-

ing vehicle performance, lane line violations and traffic rules,

and for use by the vehicle’s onboard planner. One advantage

of the MiniCity’s scale is that high-definition mapping is less

burdensome than real-world high-definition mapping of a full

city. We map the 2D road geometry, lane lines, and building

outlines in the OpenStreetMap (OSM) format, a popular

open-source map format used for full-scale autonomous

vehicle application. The Lanelet2 API [18] provides semantic

labeling for each road segment with information such as road

direction, lane lines, traffic regulatory elements (traffic lights,

speed limits), and overall road route structure. The Lanelet2

API also builds a routing tree of the map’s road segments

which is used by the car’s planner to navigate around the

MiniCity.

D. Scaled Traffic Lights and Houses

Intersections and traffic signalling are unique features of

city-wide driving. The MiniCity consists of multiple four-

way intersections and roundabout, which enables testing

of perception algorithms in realistic traffic scenery and in

complex scenarios such as a vehicle taking an unprotected

left turn around occluded vehicles. The physical traffic lights

(Fig. 2a) consist of a to-scale plastic pipe structure, 3D

printed enclosures, and pre-fabricated red-yellow-green LED

board. A Raspberry Pi 4 controls the LEDs and commu-

nicates with the rest of the MiniCity software stack via

ROS. The traffic lights can operate as traditional unsignalized

(flashing red) and signalized (red-yellow-green) lights, or

as intelligent traffic lights, such the socially-compliant

autonomous intersection manager [19] shown deployed in

the MiniCity in Fig. 2b. The MiniCity also consists of fake

grass and doll houses to mimic background scenery during

city driving. The houses also provide challenging perception

scenarios such as occluded vehicles and obstructed pseudo-

GPS. Figure 3 shows a few example views from the RACE-

CAR’s onboard cameras that show how the MiniCity mimics

full-scale driving scenes.

Fig. 3: Views from the RACECAR driving in the MiniCity.

Fig. 4: RACECAR Hardware Platform

E. RACECAR Hardware

The MiniCity consists of 1/10th scale autonomous vehicles

based on the RACECAR [17] platform, as shown in Fig. 4.

We provide configurations for multiple types of sensors

and compute which allow for comparing various hardware

configurations. For compute, the RACECARs use either an

Nvidia Jetson TX2 or the newer Jetson Xavier NX, the latter

consisting of a NVIDIA Volta GPU, 6-core ARM CPU,

and 8GB RAM. The sensor suite is composed of a VLP-

16 Velodyne Lidar, a Hokoyu 2d Lidar, a 9DoF Sparkfun

IMU, a ZED stereo camera, and an Enertion FOCBOX

speed controller that supplies wheel encoder odometry. The

enhanced computation and sensing from previous versions of

RACECAR and other educational platforms means we can

deploy full-scale algorithms on the miniature vehicles.

The platform’s code uses ROS Melodic for interprocess

communication and external vehicle-to-all (V2X) communi-

cation. We compartmentalize each component of the pipeline

into its own ROS Node to easily allow swapping algorithms

and comparing component performance. For GPU intensive

processes, such as object detection and lane detection, we

implement the algorithm in NVIDIA’s Linux4Tegra Docker

container and publish ROS topics over the host vehicle’s

networking.

Fig. 5: Upstream and Downstream Perception Tasks

III. EVALUATING PERCEPTION EFFECTS

ON MOTION PLANNING

A. Upstream and Downstream Tasks

Perception tasks typically are located at the very earliest,

or upstream, stages of any autonomous vehicle stack. For

example, the vehicle’s ability to estimate its own location

in a map, directly affects the vehicle’s ability to generate

trajectories and control the vehicle on the road. Similarly, the

output of an object detector – pose estimates and bounding

boxes of ado vehicles – directly impact an autonomous

vehicle’s ability to avoid obstacles and drive safely. A main

contribution of the MiniCity is the ability to safely test both

the upstream and downstream performance of perception and

motion planning algorithms.

(a) StereoRCNN Detections (b) PIXOR Detections

Fig. 6: Onboard Comparison of object detectors in the

presence of ado vehicles.

B. Object Detection Effects on Collision Avoidance

Each RACECAR is equipped with both a Velodyne VLP-

16 Lidar and Zed stereo camera, allowing us to test multiple

classes of perception algorithms. We deploy two state-of-

the-art object detectors using one or both of these sensors.

Stereo-RCNN [20] feeds a pair of stereo images to a re-

gions with convolutional neural network (RCNN) to predict

keypoints, regions of interest (ROI), and object classes and

finally 3D bounding boxes for each vehicle. Given that

Stereo-RCNN’s classifier is typically pre-trained on Imagenet

or similar datasets that lack pictures of RACECARS, we re-

train the network using images of RACECARS. We also

deploy PIXOR [21] which first creates a birds-eye-view

feature map to input into a convolutional neural network

(CNN) that computes a pixel-level estimate of the objects

pose and orientation.

The object detection evaluation begins with deploying

each detector on the vehicle while running the full autonomy

stack. An ado vehicle navigates the MiniCity autonomously

as drone traffic, running its own collision avoidance and

control. In addition, a human operator simulates high-risk

scenarios such as an ado car speeding through an intersec-

tion or stopped at a cross road. The ego vehicle operates

autonomously with a mission of picking up and dropping

drivers, using either a camera-based StereoRCNN detector

or PIXOR detector.

TABLE I: Evaluation of object detectors in the MiniCity.

Method
Detections Handovers Collision Avoidance

Recall Precision per min Sensitivity Specificity

Ground Truth - - 0.00 0.89 0.98
StereoRCNN [20] 0.061 0.091 2.05 0.16 0.93

PIXOR [21] 0.442 0.559 0.39 0.80 0.73

For a given detector, the MiniCity evaluates the upstream

task of accurately detecting and estimating the pose of

other RACECARs, by computing the intersection-over-union

(IOU) of the 3D bounding boxes projected to the bird-eye-

view plane. The onboard detection recall and precision are

presented in Table I in the first two columns with αIOU =
0.05. For downstream evaluation, we focus on the collision

avoidance capabilities of the cars which is directly related

to the accuracy of the object detector and pose estimator.

We measure the number of human handovers per minute

(due to collision errors) and the subsequent sensitivity and

specificity of the collision avoidance detector. The sensitivity

and specificity is defined using ground truth detections to

evaluate the true positive and negative rate of the collision

avoidance detector activating, and comparing with the actual

activation of the collision avoidance (CA) module.

C. State Estimation Effects on Lane Following

State estimation is done through an Extended or Un-

scented Kalman Filter, implemented by the open-source

robot localization ROS package [22]. As inputs, the Kalman

Filter takes odometry estimates from the onboard stereo ZED

camera, the GPS from Optitrack, wheel encoder velocity

TABLE II: Upstream evaluation of localization algorithms

Position Error Angular Error

Sensor Mean Stdv. Change Mean Stdv. Change
Configuration (m) (m) (%) (-) (-) (%)

All Sensors 0.1465 0.013 - 0.1458 0.016 -
No Zed/GPS 0.1757 0.029 19.94 0.1445 0.012 -0.91

No Zed 0.1465 0.013 -0.04 0.1445 0.012 -0.87
No GPS 0.2152 0.086 46.90 0.1445 0.015 -0.89
No IMU 0.1468 0.014 0.18 0.1513 0.021 3.74
No linear IMU 0.1464 0.013 -0.09 0.1484 0.018 1.78
IMU + Encoder Only 0.1742 0.027 18.86 0.1459 0.013 0.06

estimates, linear and angular accelerations from the Spakfun

IMU. The RACECAR uses the pose estimate to localize

within the static OSM map, inferring its current lane for

routing and its relationship to the intersection. In addition,

the RACECAR’s onboard Zed stereo camera continuously

generates a 3D map of the environment which can be used

alongside the OSM for localization.

TABLE III: Downstream evaluation of state estimation

Sensor Frequency of Line Violation Severity of Line Violation
Configuration (% of run duration) (% of car body over line)

GPS + IMU + Encoder 10.3 2.7
GPS-Only 23.3 6.3

IMU + Encoder Only 35.4 16.1

We focus on the relative contribution of various sensor

modalities on the overall quality of the onboard state estima-

tion of the vehicle’s pose. Specifically, we evaluate the effect

of each sensor on the vehicle’s estimate of its position p =
[x, y, z]T and orientation represented by quaternion q in the

MiniCity’s reference frame. We use the high quality ground

truth pose provided by Optitrack to compare the state esti-

mate to the ground truth pose, for various sensor configura-

tions. Results for position error and angular error are reported

in Table II, with Position Error Metric = ||p− pgt||2 and

Angular Error Metric [23] =
∣

∣

∣

∣ log
(

R(q)R(qgt)
T
)∣

∣

∣

∣, where

R(q) is the rotation matrix corresponding to rotation q, and

pgt and qgt are the ground truth position and orientation,

respectively. For the upstream evaluation, we re-run the

Kalman Filter with different sensor configurations and mea-

sure the relative position and angular error as a percentage

difference from our baseline with all sensors (Row 1).

In Table III we evaluate the downstream effects of various

sensor configurations by evaluating the percentage of time

the vehicle crosses a traffic lane line, where a lane line

violation is defined as any part of the car crossing a road

border or yellow line. In addition, to quantify the severity of

the line violations, we report the average percentage of the

car body that crosses over the line during a line violation.

For downstream evaluation, we compare three localization

configurations and repeat each run four times. We find that

when utilizing the full sensor suite for localization (IMU,

GPS, encoder), the lane violations correspond to only a very

small percentage of the body over the line.

REFERENCES

[1] X. Huang, et al., “Tip: Task-informed motion prediction for intelligent
vehicles,” arXiv preprint arXiv:2110.08750, 10 2021.

[2] A. Buhler, et al., “Driving through ghosts: Behavioral cloning
with false positives,” 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5431–5437, 10 2020.

[3] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 3354–3361, 2012.

[4] H. Caesar, et al., “nuscenes: A multimodal dataset for autonomous
driving,” Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 11 621–11 631, 6 2020.

[5] M. F. Chang, et al., “Argoverse: 3d tracking and forecasting with rich
maps,” Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol. 2019-June, pp. 8740–
8749, 2019.

[6] P. Sun, et al., “Scalability in perception for autonomous driving:
Waymo open dataset,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 2443–
2451, 2020.

[7] J. Geyer, et al., “A2d2: Audi autonomous driving dataset,” arXiv
preprint arXiv:2004.06320, 4 2020.

[8] X. Huang, et al., “The apolloscape open dataset for autonomous
driving and its application,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 42, pp. 2702–2719, 2020.

[9] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” pp. 621–635,
2018.

[10] M. Müller, V. Casser, J. Lahoud, N. Smith, and B. Ghanem, “Sim4cv:
A photo-realistic simulator for computer vision applications,”
International Journal of Computer Vision, vol. 126, pp. 902–919, 9
2018.

[11] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“Carla: An open urban driving simulator,” Conference on Robot
Learning, pp. 1–16, 2017.

[12] A. Amini, et al., “Learning robust control policies for end-to-end
autonomous driving from data-driven simulation,” IEEE Robotics and
Automation Letters, vol. 5, pp. 1143–1150, 2020.

[13] M. O’kelly, et al., “F1tenth: An open-source evaluation environment
for continuous control and reinforcement learning,” Proceedings of
Machine Learning Research, vol. 123, pp. 77–89, 2020.

[14] B. Balaji, et al., “Deepracer: Autonomous racing platform for experi-
mentation with sim2real reinforcement learning,” Proceedings - IEEE
International Conference on Robotics and Automation, pp. 2746–2754,
2020.

[15] B. Goldfain, et al., “Autorally: An open platform for aggressive
autonomous driving,” IEEE Control Systems, vol. 39, pp. 26–55, 2019.

[16] L. Paull, et al., “Duckietown: An open, inexpensive and flexible
platform for autonomy education and research,” 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp.
1497–1504, 5 2017.

[17] S. Karaman, et al., “Project-based, collaborative, algorithmic robotics
for high school students: Programming self-driving race cars at mit,”
ISEC 2017 - Proceedings of the 7th IEEE Integrated STEM Education
Conference, vol. 00, pp. 195–203, 2017.

[18] F. Poggenhans, et al., “Lanelet2: A high-definition map framework
for the future of automated driving,” IEEE Conference on Intelligent
Transportation Systems, Proceedings, ITSC, vol. 2018-Novem, pp.
1672–1679, 2018.

[19] N. Buckman, A. Pierson, W. Schwarting, S. Karaman, and D. Rus,
“Sharing is caring: Socially-compliant autonomous intersection
negotiation,” IEEE International Conference on Intelligent Robots
and Systems, pp. 6136–6143, 11 2019.

[20] P. Li, X. Chen, and S. Shen, “Stereo r-cnn based 3d object detection
for autonomous driving,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 2019-
June, pp. 7636–7644, 2019.

[21] B. Yang, W. Luo, and R. Urtasun, “Pixor: Real-time 3d object
detection from point clouds,” Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp.
7652–7660, 2018.

[22] T. Moore and D. Stouch, “A generalized extended kalman filter im-
plementation for the robot operating system,” Advances in Intelligent
Systems and Computing, vol. 302, pp. 335–348, 2016.

[23] D. Q. Huynh, “Metrics for 3D rotations: Comparison and analysis,”
Journal of Mathematical Imaging and Vision, vol. 35, no. 2, pp. 155–
164, 2009.

