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Abstract— The prospect of using autonomous robots to en-
hance the capabilities of physicians and enable novel procedures
has led to considerable efforts in developing medical robots and
incorporating autonomous capabilities. Motion planning is a
core component for any such system working in an environment
that demands near perfect levels of safety, reliability, and
precision. Despite the extensive and promising work that has
gone into developing motion planners for medical robots, a
standardized and clinically-meaningful way to compare existing
algorithms and evaluate novel planners and robots is not
well established. We present the Medical Motion Planning
Dataset (Med-MPD), a publicly-available dataset of real clinical
scenarios in various organs for the purpose of evaluating
motion planners for minimally-invasive medical robots. Our
goal is that this dataset serve as a first step towards creating a
larger robust medical motion planning benchmark framework,
advance research into medical motion planners, and lift some
of the burden of generating medical evaluation data.

I. INTRODUCTION

Automation of medical robots for clinical procedures or
subtasks is increasingly being shown to be feasible. Achiev-
ing autonomy in interventional medical procedures has a lot
of potential benefits for patient care and hospital efficiency.
Much like teleoperated medical robots, such as the da Vinci
(Intuitive Surgical Inc., Sunnyvale, CA), can compensate for
physician fatigue and hand instability, autonomous medical
robotics can further improve and standardize patient care
by accounting for inter- and intra-physician variability while
also focusing the physician’s time on sub-tasks that require
their expertise. However, beyond the technical challenges
that exist in hardware and software, a critical, if not the most
important, challenge in these systems is making them safe
and reliable. To address these challenges and still benefit
from the advantages of automation, integrating motion plan-
ning into medical robots to ensure safe motions is essential.
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One class of medical robots that has been studied ex-
tensively over the past couple decades has been medical
continuum robots, which include, for example, concentric
tube robots and steerable needles [1]. Many mechanical
designs have been proposed for these devices, but at their
core, medical continuum robots can follow curvilinear tra-
jectories in 3D, allowing them to curve around obstacles and
access regions of the anatomy that are otherwise inaccessible
when using straight rigid tools. The potential benefit of
these devices has been proposed in numerous organs and for
various medical procedures. The complex kinematics of these
devices in conjunction with the precision required for safe
medical procedures make manual operation of these devices
unintuitive and impractical. To overcome this challenge,
autonomous robots have been proposed that actuate the
medical continuum robot following a planned trajectory.

Despite the numerous motion planners that have been
proposed for medical continuum robots, to the best of our
knowledge, a benchmarking dataset to evaluate the perfor-
mance of these algorithms does not exist. The lack of a
shared benchmarking resource has lead each research group
to generate their own testing data, which is often a time
intensive effort. Since the motion planners have been tested
in various organs, in different anatomical models of those
organs, and likely with different obstacle resolutions, it is
difficult to properly assess the benefits and drawbacks of
each proposed motion planning approach and to compare
motion planners. To help evaluate the benefits of robot
automation in medicine, it is important to have benchmarks
that can robustly and equitably evaluate the performance of
algorithms in clinically relevant scenarios.

In this work, we propose Med-MPD, a medical bench-
marking dataset consisting of real clinical motion planning
environments for assessing motion planners for medical
continuum robots and related minimally-invasive medical
robots. The data includes benchmark scenarios defined by the
relevant anatomy and the clinical problem in the lungs, liver,
and brain. We make Med-MPD publicly available at https:
//github.com/UNC-Robotics/Med-MPD.

II. RELATED WORK

There are several robotics datasets and benchmarking
suites that have been developed specifically to allow robust
evaluation of motion planners [2], [3], [4], [5] (and citations
within). These works focus on non-medical robots. There
have also been several medical robotics datasets that have
been published, but these are mostly focused on computer
vision problems like tool or anatomy segmentation, physician
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training or assessment, and object manipulation, but not
on motion planning [6], [7], [8], [9]. Several works have
proposed simulators for medical robots [10], [11], [12], but
there is no set benchmarking dataset with which to compare
different motion planning algorithms.

A variety of algorithms for medical continuum robots have
been proposed that encompass various organs and clinical
applications. Within the broad class of medical continuum
robots, there has been substantial work in developing motion
planners for steerable needles in the lungs [13], [14], [15],
liver [16], [17], prostate [18], [19], [20], [21], and brain [22],
[23], [24]. It is difficult to effectively compare these motion
planning algorithms since they span different organs and
different instances of these organs.

III. MED-MPD

Med-MPD contains anatomical environments and specifi-
cations of clinically relevant scenarios in the lungs, liver,
and brain. These three organs have received considerable
research attention from the continuum medical robots motion
planning community, especially for steerable needles. The
description of each environment, the clinical motivation,
and several relevant evaluation criteria are presented below.
Although each organ has various pathologies each defined
by a different clinical objective, the planning problem we
consider is target reach. This objective encompasses many
clinical procedures, including biopsy, ablation, and drug
delivery. Future iterations of the data could be adapted to
evaluate motion planners for scenarios where the objective
is different, such as manipulation at the target.

For each organ, the data used in our dataset is taken
from The Cancer Imaging Archive (TCIA), a public medical
images database [25]. We represent the environments as
three-dimensional binary maps that indicate the presence or
absence of obstacles at each corresponding voxel location in
the original medical image. This environmental representa-
tion is used by many of the medical robot motion planners
referenced above. We also provide a collection of clinically-
motivated start poses in each environment, along with target
points that correspond to true clinical targets.

A. Lungs

It is estimated that roughly one million pulmonary nodules
are discovered every year in the United States. In order to
get a definitive diagnosis for these nodules, a tissue biopsy
is required. There are several methods to reach lung nodules,
but the least invasive and safest approach is via bronchoscopy
where a physician navigates a bronchoscope through the
airways and inserts a needle into the lung tissue towards
the target. Since physicians currently use straight rigid tools
to perform the biopsy which are limited in reach and access,
there have been efforts to use flexible steerable needles to
overcome some of the existing challenges and increase the
number of patients for which bronchoscopy can be used [26].
Delivery of the robot can be done through the working
channel of a bronchoscope.

Fig. 1. A representative lung environment consisting of blood vessels, lung
fissures, bronchial tree, and pleural boundary. A nodule (target) is shown
on the right along with a sample planned trajectory. The steerable needle
starts at a valid point along the airway wall and can travel through the space
within the pleural boundary that is not occupied by obstacles.

At a high level, the anatomy of the lungs consists of the
airways, major blood vessels, and the pleura (lung boundary)
(see Figure 1). The remaining space inside the lung (known
as the parenchyma) is composed of functional tissue and
is the location where lung nodules that may be suspicious
for cancer often present. We present 5 motion planning
scenarios in the lungs that reflect real clinical scenarios of
patients with lung nodules. The data is part of the Lung
Image Database Consortium and Image Database Resource
Initiative (LIDC-IDRI) image collection [27], [28]. Each
environment consists of obstacles including the airways,
major blood vessels, lung fissures, and pleura, and segmented
nodules in the parenchyma. The fissures and nodules were
manually segmented while all other objects were automat-
ically segmented [29]. The start poses correspond to areas
along the airway wall that are accessible with a bronchoscope
through which a medical robot can be passed. An example
plan for a flexible steerable needle is shown in Figure 1.

B. Liver

Currently, percutaneous liver biopsies, where a physician
inserts a needle through the abdominal wall and into the liver,
are most commonly performed with straight rigid tools. The
mechanical constraint of existing devices make it hard to
reach posterior sites that are obstructed by critical anatomy.
Additionally, when multiple targets exist, a physician will
need to re-insert the needle for each target. Medical devices
such as steerable needles that are able to curve around
obstacles and reach multiple sites from a single point-of-
entry can alleviate some of these clinical challenges.

Similar to the lungs, the liver motion planning environment
consists of major blood vessels and the organ boundary. The
remaining space within the liver (also referred to as the
parenchyma) is traversable. We present 5 motion planning
environments in the liver in patients with hepatocellular
carcinoma with segmentations of relevant obstacles. The
data is derived from the Hepatocellular Carcinoma Transar-
terial Chemoembolization Segmentation (HCC-TACE-Seg)
dataset [30], [31]. A sample liver planning environment is
shown in Figure 2.



Fig. 2. A liver environment from the dataset showing the segmented
hepatic arteries, hepatic veins, portal vein, liver boundary, nodule (target),
and a sample trajectory. The three boxes on the bottom show the view in
the CT slices (transverse planes).

C. Brain

The brain is one of the most complex organs in the
body, with nearly every portion of tissue critical to some
physiologic function. From a planning perspective, while
obvious obstacles exist such as blood vessels and ventricles,
there are many other regions of the brain and properties of
the tissue that are important to consider. For example, the
directionality of white matter fibers, which can be analyzed
via tractography, can play an important role in evaluating
trajectories through the brain. Given the density of critical
regions in the brain and their fragility, medical robots and
motion planning algorithms that consider and account for
these constraints can have a large impact in this domain.
We include 5 motion planning environments in the brain
where the targets are the globi pallidi for deep brain stimula-
tion. We consider blood vessels and ventricles as traditional
obstacles, whereas all other segmentations of brain regions
can be assigned a cost since some subset of them must
be traversed. White matter fiber tracts are not currently
included in the data. The data is part of the Healthy MR
Database [32]. Blood vessels were manually segmented and
all other structures were segmented using FastSurfer [33]. A
sample environment is depicted in Figure 3.

D. Evaluation Criteria

In order to evaluate and compare the performance of
different motion planning algorithms, we describe several
criteria that are relevant to many medical applications. This
is a general and non-exhaustive list of relevant criteria, and in
many cases, each organ and clinical application has domain-
specific considerations that would be valuable to use as
evaluation metrics.

The following metrics can be reported for a single clinical

target or as a statistic across a collection of clinical targets
in the data.

• Path Length: the length of the collision-free motion plan
from the start pose to the target.

• Computation Time: the amount of computation time that
the motion planner took to find a kinematically-feasible
collision-free plan from the start pose to the target prior
to the procedure.

• Replanning Time: the amount of time that the motion
planner took to find a kinematically-feasible collision-
free plan from its current intraoperative pose to the
target following a random deviation event.

• Obstacle Clearance Statistics: the minimum, mean, and
median of the Euclidean distances between every pose
along the motion plan to its nearest obstacle.

• Procedure Success (clinical targets): the percentage of
clinical targets that the motion planner was able to
successfully plan to.

• Coverage of the Anatomy (random targets): the percent-
age of random goals that the motion planner was able
to successfully plan to. This is an approximation for the
motion planner’s ability to generalize to any target.

IV. DISCUSSION

In this work, we proposed Med-MPD, a new medical
benchmarking dataset for motion planners for medical con-
tinuum robots and related minimally invasive medical robots.
At its current state, Med-MPD is a stand-alone collection
of clinically-relevant motion planning scenarios. It is our
hope to extend the benchmarking suite in the various ways
described throughout this paper, as well as to integrate it
directly into an existing motion planning framework. We
also hope to expand the provided start poses to include start
regions from which motion planning can begin. This would
introduce an interesting and medically relevant problem
where the choice of start pose is itself a motion planning
challenge that can be optimized as part of the procedure. We
also hope to introduce uncertainty into the data by imple-
menting methods that allow for target and obstacle deviation
during a medical procedure. Uncertainty is highly likely to
have an impact during a procedure because of the deformable
nature of organ tissue. Ideally, the environmental uncertainty
would be incorporated into a simulator that would consider

Fig. 3. A brain environment from the dataset showing the segmented
blood vessels, lateral ventricles (without the temporal horn), globi pallidi,
brain boundary, a sample trajectory, and various segmented regions of the
brain (left: multiple colors).



a robot’s model and differential constraints to enable more
realistic evaluations. Since the data is not directly tied to
medical continuum robots, the clinical environments can be
used to evaluate other existing and novel medical robots. It is
our intention that this dataset be used to advance research in
motion planning for autonomous medical robots towards the
ultimate goal of leveraging these systems to improve patient
care.
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