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Abstract— Robot navigation in unstructured human environ-
ments remains challenging when crowd density limits visibility
and scene understanding like in malls, markets and airports.
In this abstract, we present a new dataset of pedestrian
interactions with a service robot with egocentric sensor data
from RGBD, 3D LIDAR, force sensinsg, and robot state.
Moreover, we aim to highly the need to consider real-life
navigation data in order to define proper benchmarking tools
for autonomous navigation control and how to realize them
from the robot’s perspective. We provide over 110 trials with
266k frames in different crowd types and provide methods and
code for comparing controllers within this navigation task.

Index Terms— Mobile Service Robots, Human-Robot Inter-
action, People detection and tracking, autonomous navigation

I. INTRODUCTION

Autonomous navigation in pedestrian areas is a prevalent
topic for all service robot categories; delivery robots on the
streets, cleaning robots in malls, and self-driving wheelchairs
in airports. All bring high societal and economic value.
However, interactions in highly populated areas remain chal-
lenging in perception, control and pedestrian interactions,
where proxemics, self-localization, and disruptive questions
remain open.

Collisions are one of the major safety concern as impacts
with most service robots could lead to dangerous accidents
even at ’slow” speeds of 1.5 m/s (6 km/h) [1], moreover,
likelihood of subsequent injuries from falls is even higher.
At the same time, freezing the robot as safety measure in the
middle of crowds could lead to other dangerous collisions
with pedestrians stumbling on the robot, become a danger to
itself and bystanders [2], [3].

Although several novel approaches are constantly inves-
tigated no proof or guarantees in natural crowds exists.
Moreover, benchmarks are lacking for actual pedestrian-
robot interactions. In our previous work [4], we focused
on combining active compliance with DS-based obstacle
avoidance [5] which provides a way to slide around obstacles
while in contact and continue moving towards the goal.
Effectively making the robot post-collision resilient as long
as we follow safety design considerations for robot impacts
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Fig. 1. Robot Qolo navigating on the crowds up to 1ppsq in density, the
dataset includes annotated 3D BBx and 2D BBx on Lidar and RGBD data,
respectively.

through velocity limits and surface compliance as outlined
in [1].

In this work, we present a dataset — lasa-crowdbot' in
[6]- and the key benchmark points used for evaluating the
controller described above on outdoor pedestrian interactions
within natural crowds. Unlike existing datasets of indoor
and outdoor robot navigation MOT20 [7], JRDB [8], and
SCAND[9], we provide a detailed classification by type and
density of pedestrian crowds, which we consider relevant for
benchmark of autonomous social navigation.

The robot Qolo [10] (Fig.1), a personal mobility vehicle
for people with lower-body impairments was equipped with
a autonomous navigation control operating in shared-control
[11] and full autonomy mode [4], [12]. We performed long-
term testing at different locations in the city of Lausanne,
Switzerland and evaluated multiple controllers through sys-
tematic testing with multiple crowd types and densities.

All source code for processing and analyzing interactions

was made open SOllI'C€2.

II. DATASET DESCRIPTION:

The dataset includes point clouds from a frontal and rear
from two 16 lasers LIDAR (Velodyne VLP-16), a frontal
facing RGBD camera (Real Sense D435), and Force/Torque
sensor (Botasys Rokubi 2.0). The following are the main
recorded sensing modalities:

¢ 2 x 3D point cloud (50 m, 20Hz)

IDataset website:
crowdbot-dataset/

2Pedestrian analysis tools can be found here: ht tps://github.com/
epfl-lasa/crowdbot-evaluation-tools

https://www.epfl.ch/labs/lasa/



Fig. 2. Example of experimental setup scenario 1, a mixed influx of 6
streets during a farmer’s market with up to 0.7 ppsm in crowd density.

¢ I1x RGBD camera (10 m, 30fps)

e 1 x force sensor (< 1kN, 200Hz)

« Robot’s state and controller output (100Hz)

o Pressure sensing (100Hz) (in shared-control mode)

As well, we provide the metadata of people detection
and tracking from onboard real-time sensing (DrSPAAM
detector [13]), and people class labelled from 3D point
cloud (AB3DMOT [14]). Furthermore, several metrics were
developed to be measured from an egocentric perspective
and are given in the dataset: estimated crowd density at
multiple radii, density variance, proximity to the robot, and
path efficiency metrics (such as time to goal, path length,
and virtual collisions).

The whole dataset comprises over 250k frames of data
(over 5 hours of navigation in dense crowds), provided on
ROS standard data type: rosbag. One recording of the dataset
includes approximately 120s of data in a single rosbag format
with all Qolo’s sensors and state. Moreover, we include
offline post-processed people tracking data over the 3D point
cloud using our adapted tracker based on [14] exported in
npy files for easy read and access.

Summarizing the data content is:

o Pedestrian motion information in the form of 3D point
clouds around the robot, including all surrounding peo-
ple and obstacles in a range of up to 50 m.

o Pedestrian’s motion data from a forward-looking RGBD
camera, with people, labelled and blurred.

e Output from 3 people detection layers and 1 integrated
people tracker.

o Force/Torque information gathered by the contact sen-
sors at the robot’s bumper.

e Recordings of the navigation interface input given by
the user/driver of the robot.

o Motion data was gathered from the robot inertia sensors
and odometry sensors.

o Blurred video recordings of the scene from the robot’s
perspective.

III. CROWD NAVIGATION ASSESSMENT

Previous works have focused on: collisions, success rate,
and time to goal [15], [16], as main outcome metrics in
pedestrian scenarios. Nonetheless, these metrics are not
sufficiently detail to assess the actual pedestrian to robot
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Fig. 3. Resulting density clusters within the current dataset.

interaction. Moreover, crowd type, density and homogeneity
should be accounted to create a relevant benchmark tool.
Therefore, we first categorize all interactions by density of
the crowd. Here, we account for mean, max, and standard
deviation of density measured at 2.5, 5 and 10 m radii from
the robot, as depicted in Fig. 3.

We propose a set of metrics which highlight different
characteristics of the robot performance in social navigation:

1) Controller performance: In order to observe the con-
troller against high-level planning algorithm these met-
rics allows to assess different patterns in the crowd
compatibility. We compute the controller drive con-
tribution, the agreement, and the fluency, and compare
them among different crowd types in reference to non-
crowded scenarios.

2) Pedestrian interactions: In a simple interaction metric
we use minimal mean distance to pedestrians, virtual
collisions with robot boundaries, and real collisions
were selected as main egocentric metrics to estimate
the level of agreement with the social navigation.

3) Path efficiency: with the goal of comparing the overall
system performance we selected the relative time to
goal, relative path length and relative jerk w.rt. a
non-crowded baseline recording. So that, all metrics
are valid regardless of distance travelled and crowd
density.

IV. RESULTS

The current dataset includes two type of scenarios, the
first, running the robot over 5.0 km in sets of 20 m round
trips, for a total of 95 recordings. Figure 3 shows an example
around low and mid crowd densities. The second type of
scenario was successfully recorded 15 times with higher
densities approximately reaching 1 ppsm from on-board
measurements.

Given the type of scenario and crowd density we clustered
the data into 3 types of: sparse, flows, and mixed traffic, and
divide it with low- (< 0.15 ppsm), mid- (< 0.65 ppsm),
and high- (< 1 ppsm) pedestrian densities. We concluded
that such granularity level into the scenarios construction and



TABLE I
CROWD NAVIGATION DATASET COMPARISON

Name [Year] # Sequences  Indoor/Outdoor # Frame # 2D BBx #3D BBx  # 2D tracks  Crowd Density ~ Crowd Type
MOT20[7] (2020) 8  Indoor & Outdoor 13k 1.6M - 3.6k No No
JRDBI8] (2020) 54 Indoor & Outdoor 28k 2.4M 1.8M 3.5k No No
SCANDI[9] (2022) 138 Indoor & Outdoor - - - - No No
CROWDBOT (2022) 110 Outdoor 266k ~ 4M* ~ 4M* TBC* Yes Yes

* Under verification with multiple tracking methods.

classification of crowd data is required in order to appropri-
ately compare the results of interacting around unstructured
human environments.

Compared with existing datasets, we present crowd types
and clusters by crowd density, something non-existing in
other robot navigation datasets (Table I). Moreover, we offer
a large dataset with 110 trials exceeding 266k frames in
2D and 3D data with labelled bounding boxes. Further
details of the compatibility with the specific crowd navigation
scenarios and tested controller are described in detail in our
work in [17]. Subsequent work on our dataset will quantify
the uncertainty on bounding boxes both in 2D and 3D data,
as well as, validate the interaction types with pedestrians
through the 2D tracks that were measured.
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