
Arena-Bench: A Benchmarking Suite for Obstacle Avoidance
Approaches in Highly Dynamic Environments

Linh Kästner1, Teham Bhuiyan1, Tuan Anh Le1, Elias Treis1, Johannes Cox1, Boris Meinardus1,
Jacek Kmiecik1, Reyk Carstens1, Duc Pichel1, Bassel Fatloun1, Niloufar Khorsandi1 and Jens Lambrecht1

Abstract—In recent years, DRL approaches have shown
superior performance in dynamic obstacle avoidance. However,
these learning-based approaches are often developed in specially
designed simulation environments and are hard to test against
conventional planning approaches. Furthermore, the integration
and deployment of these approaches into real robotic platforms
are not yet completely solved. In this paper, we present Arena-
bench, a benchmark suite to train, test, and evaluate navigation
planners on different robotic platforms within 3D environments.
It provides tools to design and generate highly dynamic evalua-
tion worlds, scenarios, and tasks for autonomous navigation
and is fully integrated into the robot operating system. To
demonstrate the functionalities of our suite, we trained a DRL
agent on our platform and compared it against a variety of
existing different model-based and learning-based navigation
approaches on a variety of relevant metrics. Finally, we deployed
the approaches towards real robots and demonstrated the
reproducibility of the results. The code is publicly available
at github.com/ignc-research/arena-bench.

I. INTRODUCTION

In recent years, Deep Reinforcement Learning (DRL) has
accomplished remarkable results for dynamic obstacle avoid-
ance due to its ability to swiftly react to unexpected changes
[1],[2],[3]. A common barrier is that most of the research
work evaluated their approaches on specifically designed
simulation environments or test setups, making a general
comparison against existing approaches difficult [4]. Further-
more, deployment and integration of DRL into real robotic
platforms is still an open frontier due to safety reasons [5],
[6]. Thus, a benchmark to properly assess those approaches in
realistic scenarios and against existing algorithms is not only
an essential step towards the deployment of DRL into real
robots but also assists in the development and validation of
learning-based approaches on mobile robots. Existing bench-
marks for robot navigation algorithms mostly focus on static
environments, but few exist that cover both dynamic and
static ones. Moreover, existing benchmarks for navigation
in dynamic environments often contain and compare only
a small number of planners [7], [8], [9]. On that account,
we propose Arena-bench, a benchmark suite consisting of
tools to train, test, and evaluate navigation algorithms for
dynamic obstacle avoidance on different robotic systems.
This benchmark provides an intuitive interface to design
and create dynamic scenarios within 2D and 3D simulators
based on Flatland and Gazebo, respectively. The benchmark

1Chair Industry Grade Networks and Clouds, Faculty of Electrical En-
gineering, and Computer Science, Berlin Institute of Technology, Berlin,
Germany d.kaestner@tu-berlin.de

Fig. 1: Arena-bench is a benchmark suite that enables to train and
evaluate navigation approaches in realistic dynamic environments. It
provides tools to develop navigation approaches, design and gener-
ate scenarios, and evaluation tasks on a variety of robotic platforms.
The results can be plotted on up to 16 different navigational metrics.

is completely integrated into the robot operating system
(ROS) and includes a variety of classic and state-of-the-art
learning-based planners. Arena-bench further provides tools
to evaluate all planners in terms of various navigational
metrics ranging from navigational safety and robustness to
path quality and efficiency.
The main contributions of this work are the following:

• Proposal of a benchmark suite to develop navigation
approaches and design and generate realistic, dynamic
scenarios. The Pedsim library is utilized to realistically
model dynamic obstacles.

• Integration of a complete training pipeline to train DRL
agents on different robots. The user can integrate new
robots and train DRL algorithms on an efficient 2D
simulator or on a more realistic 3D simulator.

• Extensive evaluation of several planners developed using
this work and provision of tools to evaluate the results
on up to 16 relevant navigational metrics.

II. METHODOLOGY

Our proposed benchmark consists of multiple modules that
enable the user to design and generate evaluation scenarios,
train DRL-based navigation algorithms, integrate ROS-based
planners, and plot the results with up to 16 different naviga-
tional metrics.

A. System Design

The complete system design is illustrated in Figure 2. The
first module in the benchmark suite is called arena-tools,
which includes an extensive toolset to design and generate
maps, scenarios, and tasks. The specific components are
described in the next section. The user can choose between a
manual task generation mode consisting of generating their



Fig. 2: Our proposed benchmark suite consists of multiple modules for designing and generating different scenarios and evaluating different
navigation approaches on specifically designed tasks.

own map, specific scenarios, and an automatic generation of
random tasks. Using these tasks, the navigation approaches
can be tested and benchmarked using the simulator module.
Our framework is built on top of the 2D simulator Flatland
and the 3D simulator Gazebo. Moreover, we provide the pos-
sibility to train DRL agents in both simulation environments.
The resulting planners are cross-compatible across both sim-
ulators and utilize ROS as the middleware. Finally, Arena-
bench provides an automatic evaluation class to qualitatively
and quantitatively evaluate all planning algorithms on up
to 14 different navigation metrics ranging from navigational
safety to trajectory quality and efficiency.

B. Dynamic Obstacles with Pedsim

The dynamic obstacles are spawned and controlled using this
Pedsim library which, includes social states and calculates
trajectories [10]. We integrated Pedsim into our 2D and 3D
simulator for more realistic behavior.

C. Map Generator

Part of arena-tools is the map editor, which generates 2D and
3D worlds. The user can either manually create a scenario
with dynamic and static obstacles or select parameters for
automatic scenario generation. Both can be done with our
arena-tools application, which provides a variety of function-
alities for scenario generation. Thus, even specific scenarios
from the end-user can be constructed, which is crucial for
real-world validations. Exemplary maps are illustrated in Fig.
4. We integrated the random map generation approach of
Heiden et al. [11] and extended it for generating 3D gazebo
environments.

D. Task Generator

Once scenarios are generated, tasks within these scenarios
can be defined using the task editor. Thereby, the user
defines configuration files, which indicate the task mode, the
number of runs, used planners, and the robot model. Fig.
3 illustrates the editor with all parameters to set. In total,
the task generator has three modes: Random, Scenario, and
Staged, which will be described in the following sections.
The Random Mode creates a random scenario for the used

Gazebo world in each run. Different arbitrary locations are
used for spawning the robot, as well as setting its desired goal
position. The number of dynamic obstacles is specified before
starting the simulation and fixed for the whole duration. The
actors’ starting and goal position is randomly generated based
on the provided map. This information is then sent to the
Pedsim simulator when creating the desired Pedsim obsta-
cles. The randomness of this mode makes it the preferred
choice for quantitatively benchmarking different navigation
approaches assuming that a large number of random scenar-
ios are created and evaluated to ensure statistically significant
evaluations.
The Scenario Mode is a reasonable choice for both qual-
itative and quantitative evaluations. The idea is to limit the
randomness without sacrificing complexity to deliver repro-
ducible scenarios, which can be tested and evaluated using
separate planning methods. Consequently, each run of this
task mode should provide the same environment except for
the dynamic behavior of the robot and human agents, which
can not be accounted for. We achieve this through arena-
tools [12], where a scenario editor was developed. Existing
maps of the environment can be used to then specify the
robot’s spawning location and goal position. Furthermore, we
can add an arbitrary number of dynamic obstacles, describe
their start/goal spot, as well as their waypoints, which should
be included in their overall trajectory. The scenario editor
generates a configuration file describing the specifics of a
scenario. The data is read by the task_manager, converted
into a compatible format for our platform, and subsequently
used in the simulation.
Staged Mode The staged mode is the preferred choice
to automate a long list of evaluation scenarios. Here, the
user specifies several levels with increasing difficulty and
can set the threshold of when to reach this level. Thus,
an evaluation curriculum is generated, which makes it an
appropriate choice, especially for quantitative evaluations of
planners. The stages can also be designed using arena-tools
and are encoded into a configuration file.



Fig. 3: Arena-tools. We provide a variety of tools within our benchmark to generate or load existing maps, scenarios, and tasks. The
detailed documentation of arena-tools can be found in the GitHub documentation.

III. EVALUATION

To demonstrate the functionalities of our benchmark, we
conducted experiments on several different maps. Each map
contains two scenarios with 5 and 10 pedestrians with an
average speed of 0.3m/s. In each scenario, the obstacle
velocities are set to 0.3 m/s. As a global planner, A-Star
is used for all approaches. For the DRL-based planners, we
utilized the Spatial Horizon waypoint generator of Kästner et
al. [13] using the time and location horizon of tlim = 4s and
dahead = 2m. For the model-based approaches, we utilize the
ROS move-base interface. Localization is acquired using the
Adaptive Monte Carlo (AMCL) module. For each planner, we
conduct 15 test runs on each scenario. During the test runs,
our platform will record the necessary data automatically
and provide it to our evaluation class, which is able to
generate qualitative and quantitative plots on up to 16 metrics
listed in Table ??. It includes metrics to evaluate navigational
efficiency, robustness, safety, and smoothness. Furthermore,
some metrics are subdivided in sub-metrics such as the
average, minimum, maximum and normalized values, which
could give additional insight.
To represent navigational safety, efficiency, and smoothness,
the aggregated collision rates, path lengths in meters, and
movement jerks of all planners for three different robot
platforms on each map are depicted in Fig. 4 respectively.
Thereby, a collision is counted when the laser scan detects
a value smaller than the robot radius. The movement jerk
expresses the rate at which the robot changes its accelera-
tion with respect to time. To represent all common robotic
kinematic platforms, we deployed all planners except for the
GRING planner on the Jackal (Ackerman Drive), the Turtle-
bot3 (TB3) (Differential Drive), and the Robotino (RTO)
(Holonomic) robot. The GRING planner was only deployed
on the Jackal and Turtlebot3 because it was only trained for
wheeled robots, and deployment on the Robotino resulted in
flawed behavior.
Navigational Safety: It is observed that the AIO planner
excels in terms of navigational safety, accomplishing the
lowest collision rates in all scenarios with 5 and 10 obstacles.
Our ROSNAV planner also accomplishes competitive results
in terms of navigational safety with low collision rates. Only

for the Robotino, ROSNAV produced collisions in the indoor
and outdoor map. On all other robot platforms and maps, no
collisions were produced. Based on the presented results, the
classic move-base planners TEB, DWA, and MPC planners
follow up in terms of navigational safety with competitive
results over all robots and maps. In general, they also produce
low collisions and high success rates over all scenarios
and on all robots. However, only DWA on the Turlebot3
produces high collision rates. Aggravating factors are the
slow maximum velocity of the Turlebot3 and computationally
more demanding calculation times for DWA, which result
in slower reaction times to incoming obstacles. The per-
formance of the other learning-based approaches GRING
and NAVREP is competitive in scenarios with 5 obstacles
but drops significantly for scenarios with 10 obstacles. In
situations with a high amount of dynamic obstacles, both
planners are not able to react in time.
Navigational Efficiency: With regards to navigation ef-
ficiency, differences between the robot platforms can be
observed. The AIO planner produces high path lengths for
the Jackal and Turlebot3. However, for the Robotino, AIO is
significantly more efficient, accomplishing one of the lowest
path lengths compared to all planners. Whereas ROSNAV
results are mediocre for the Jackal and Turlebot3, it out-
performs all other planners on the Robotino, similar to our
AIO planner. This indicates that our ROSNAV planner works
best on holonomic platforms due to the more flexible set of
movements the robot can exercise. The move-base planners
TEB and DWA produce similar results with competitive re-
sults over all robots, maps, and scenarios. However, the MPC
planner produces competitive results only on the Jackal and
Turlebot3 but performs worst on the holonomic Robotino.
Since MPC was specifically designed for car-like robots,
these results are expected. GRING and NAVREP perform
worst with regards to efficiency producing high path lengths
in most scenarios and all robots.

Navigational Smoothness: In terms of navigational smooth-
ness, ROSNAV produces mediocre results with higher move-
ment jerk values compared to the classic model-based plan-
ners DWA, MPC, and TEB, which all produce competitive
results. Especially the MPC planner accomplishes the lowest



SMAL WAREHOUSE

Number of Collisions Path Length [m] Time to Goal [s] Number of Collisions Path Length [m] Time to Goal [s] Number of Collisions Path Length [m] Time to Goal [s]

ARENA-TOOLS-OUTDOOR ARENA-TOOLS-INDOOR

5 Obs. 10 Obs. 5 Obs. 10 Obs.5 Obs. 10 Obs.5 Obs. 10 Obs. 5 Obs. 10 Obs.5 Obs. 10 Obs. 5 Obs. 10 Obs. 5 Obs. 10 Obs.5 Obs. 10 Obs.

SMAL WAREHOUSE ARENA-TOOLS-OUTDOOR ARENA-TOOLS-INDOOR

Fig. 4: Experiments in simulation. Quantitative results of all planners on three robots over three worlds within the 3D simulation over the
number of obstacles.

movement jerk values on all robots and scenarios. Whereas
on the Jackal and Robotino robots, the movement jerk of
MPC is close to zero, the jerk is higher on the Turlebot3.
Similar observations can be made for most of the other
planners, which produce higher jerks for the Turlebot3. This
is due to the low maximum velocity of the robot, which
results in abrupt velocity changes that cause higher values.
The findings also show that the movement jerk is directly
correlated with the maximum velocity of the robot. Thus,
the Robotino produces a significantly higher jerk compared
to the Turlebot3 robot. Nevertheless, the MPC planner is still
able to accomplish a very low movement jerk on the Robotino
and outperforms all other planners in terms of navigational
smoothness.

IV. CONCLUSION

In this paper, we proposed Arena-bench, a benchmarking
suite to train, test, and compare navigation approaches within
ROS in highly dynamic simulation- and real-world environ-
ments. Therefore, we introduced a set of tools to design and
generate worlds, scenarios, and tasks. Our platform enables
the development and training of DRL approaches as well as
the integration of classic planners for different robots. To
demonstrate the functionalities, we included three different
robot types, trained DRL agents on them, and included three
conventional planners. Subsequently, we created a variety
of test scenarios and conducted extensive evaluations of
all approaches with a wide range of alternative navigation
approaches. Finally, we transfer the approaches towards real
robots and conduct field experiments to assess the sim-to-
real gap. The platform provides an important tool not only
to assist researchers in developing and evaluating navigation
approaches in dynamic environments but also in deploying
DRL-based planners towards real robots. In future works,
we aspire to do more extensive evaluations on real robotic
systems and compare the impact of different robot kinematics
on the performance of the navigation approaches. Further-
more, we aim to elucidate the impact of different simulation
environments for training and testing.

REFERENCES

[1] H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning naviga-
tion behaviors end-to-end with autorl,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 2007–2014, 2019.

[2] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 1343–1350.

[3] A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia, M. Fiser,
and J. Davidson, “Prm-rl: Long-range robotic navigation tasks by
combining reinforcement learning and sampling-based planning,” in
2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 5113–5120.

[4] D. Dugas, J. Nieto, R. Siegwart, and J. J. Chung, “Navrep: Unsuper-
vised representations for reinforcement learning of robot navigation in
dynamic human environments,” in 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), 2021, pp. 7829–7835.

[5] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, 2021.

[6] Z. Zhu and H. Zhao, “A survey of deep rl and il for autonomous driving
policy learning,” arXiv preprint arXiv:2101.01993, 2021.

[7] J. Wen, X. Zhang, Q. Bi, Z. Pan, Y. Feng, J. Yuan, and Y. Fang,
“Mrpb 1.0: A unified benchmark for the evaluation of mobile robot
local planning approaches,” arXiv preprint arXiv:2011.00491, 2020.

[8] J. Weisz, Y. Huang, F. Lier, S. Sethumadhavan, and P. Allen,
“Robobench: Towards sustainable robotics system benchmarking,” in
2016 IEEE International Conference on Robotics and Automation
(ICRA), 2016, pp. 3383–3389.

[9] I. Rañó and J. Minguez, “Steps towards the automatic evaluation
of robot obstacle avoidance algorithms,” in Proc. of workshop of
benchmarking in robotics, in the IEEE/RSJ int. conf. on intelligent
robots and systems (IROS), vol. 88, 2006, pp. 90–91.

[10] D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

[11] E. Heiden, L. Palmieri, L. Bruns, K. O. Arras, G. S. Sukhatme, and
S. Koenig, “Bench-mr: A motion planning benchmark for wheeled
mobile robots,” IEEE Robotics and Automation Letters, vol. 6, no. 3,
pp. 4536–4543, 2021.

[12] (2021) Arena-tools. [Online]. Available: https://github.com/ignc-
research/arena-tools

[13] L. Kästner, X. Zhao, T. Buiyan, J. Li, Z. Shen, J. Lambrecht,
and C. Marx, “Connecting deep-reinforcement-learning-based obstacle
avoidance with conventional global planners using waypoint genera-
tors,” in 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2021, pp. 1213–1220.


