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Abstract— We present datasets of 2.5D elevation maps of
planetary environment that were collected on Mt. Etna during
the space-analogous ARCHES mission [1]. In addition to
the raw elevation maps, we provide cost maps that encode
the traversibility of the terrain. We demonstrate how these
cost maps are used during our development of mapping and
planning algorithms for ground based robots in the context
of the planetary rover navigation. More specifically, we use the
benchmarking pipeline to evaluate the parameters and choice of
methods that are used for the 2.5D cost map generation, which
in turn affects the path planning behavior. Finally, we showcase
how the provided maps can be supplied as a test environment in
Bench-MR, which is a framework for benchmarking of motion
planning algorithms for wheeled robots.

I. INTRODUCTION

Given the amount of available path/motion planning al-
gorithms, selecting the right one for a given robot, envi-
ronment, and application is a tough problem. In this work,
we focus on benchmarking the path planning pipeline used
for geometric planning on a planetary rover prototype called
LRU (Lightweight Rover Unit) [2]. LRU is developed at
the Robotics and Mechatronics Center, DLR. We use the
benchmarking tools not only to evaluate the path planning
algorithms but also to evaluate the parameters and choice
of methods that are used for the 2.5D cost map generation,
which are the input to the path planning algorithms. In this
paper, we demonstrate the usage of benchmarking datasets
and tools to evaluate the parameters and choice of methods
that are used for the 2.5D cost map generation. However, as
a next step, we plan to also evaluate different path planning
algorithms and are currently working in that direction.

This work focuses on using benchmarking tools, to best-
decide the parameters and methods, used for both the cost-
map generation and path planning as part of the navigation
pipeline running on the LRU.

Contributions:
• datasets for evaluation of path planning algorithms

in planetary representative environments. Provided are
2.5D elevation maps and 2.5D cost maps.

• evaluate the parameters and choice of methods that are
used for the 2.5D cost map generation in our navigation
pipeline
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Fig. 1: LRU on Mt.Etna, Italy at the ARCHES demo-mission
site where the mapping data was collected.

II. RELATED WORK

Path planning is an important component of mobile-
robotics. There exist a variety of algorithms to perform
path planning. They can be broadly classified into differ-
ent categories like search-based algorithms, sampling-based
algorithms, potential field algorithms, trajectory-optimization
algorithms and learning-based algorithms [3], [4]. This cate-
gorization is also by no means exhaustive and is subjective.
Off-late, there has been interest in the robotics community
to benchmark path planning algorithms. As a result of this,
we can see the release of some platforms and tools to help
benchmark path planning/motion planning algorithms. One
such recent benchmarking platform is PathBench [4] which
facilitated benchmarking of both classical and learning-based
path planning algorithms. Most of these platforms also
have some readily available datasets to evaluate/benchmark
path planning and motion planning algorithms. For exam-
ple, in Bench-MR [5], there are predefined grid-based and
polygon-based environments as well as feature to custom
generate grid-based environment. BARN (Benchmark for
Autonomous Robot Navigation) [6] dataset provides simu-
lated cluttered environment models with varying levels of
difficulty to evaluate navigation pipelines of mobile robots.
However, they poorly represent the unstructured outdoor
planetary environment that we are interested in. We hope, the
datasets we provide, complement well existing ones and can
be used in existing benchmarking platforms to better test the
performance of path planning algorithms in an unstructured
outdoor planetary analogue environment.



III. DATASETS

We provide world-models of real outdoor planetary-
analogue terrain in the form of 2.5D cost grid-maps. In
addition, we provide the 2.5D elevation maps as the cost
maps were computed based on the locomotion capabilities
of LRU rover and one can compute different cost maps if
needed. We provide both the elevation and cost maps in
PFM (Portable FloatMap) image format. In addition, we
also provide the 2.5D cost maps in PNG image format. The
datasets can be obtained under: https://rmc.dlr.de/
benchmark_maps_2022.

IV. NAVIGATION IN UNSTRUCTURED ENVIRONMENTS

We develop navigation for robots in unstructured environ-
ments. The cost of moving in unstructured environments is
given by the traversibility of the underlying terrain. Genera-
tion of cost and obstacle maps from elevation data is given
in 1 and shown in Fig. 2.

(a) Elevation map

(b) Cost map

(c) Obstacle map

Fig. 2: Representation of 2.5D elevation, cost, and 2D
obstacle map. Cost and obstacle maps are computed from
the underlying elevation.

Our objective of geometric path planning in unstructured
environments is to minimize the cost accumulated along the

path. This differs from moving in structured environments
with binary obstacle maps, where cells are either blocked
or free and therefore all free cells have the same cost
for traversing. Planning in structured environments typically
aims to optimize path length and does not respect the cost
of the terrain.

The input to the path planner is a 2.5D cost map which
is representative of the environment around the rover and
is computed as: Depth-Image → 3D Point Cloud → 2.5D
Elevation Map → 2.5D Cost Map. We aggregate such 2.5D
cost maps computed form single depth images and build a
bigger 2.5D cost map centered around the robot to perform
path planning. The size of this map can be chosen and is set
to 40 meters for the generation of the benchmark datasets.
The resolution of the grid in the maps is set as 5 cm.

Using this as an input, the path planner computes a 2D
path connecting start and goal pose. For more details on the
generation of 2.5D cost maps that are used as input for path
planning, refer to [7].

Cost Map Generation for Path Planning:

We store the knowledge of the traversibility in a 2.5D cost
map. The values in this 2D array take continuous values > 0.
The cost map Cpla used for planning is computed as

Cpla = fobs
(
faug

(
Cele

(
E
))
, Cele

(
E
))

(1)

where Cele is the cost map associated by the underlying
elevation map E and computed as in [7]. Obstacle detection
is performed by fobs and purely based on Cele. A cell is
marked as obstacle in Cpla if its value cele exceeds a given
obstacle detection constant cobs. faug augments Cele and
is used to change the ratio r = max(Cpla)/min(Cpla)
between cost of traversable cells. Changing this ratio controls
the behavior of the cost-minimizing path planner. Large r
prefer longer paths along low costs and small r result in
shorter paths through high cost regions. We demonstrate
three methods that can be used for faug .

Thresholding values in Cele that are below cthr to a
constant cflat. This will create regions of flat cost values of
cflat and regions with continuous values > cthr. Depending
on the settings of cflat, cthr, and cobs this augmentation
can either increase or decrease the ratio r. The corner case
cthr = cobs sets r = 1 and results in binary obstacle maps
as cost map.

caug =

{
cflat if cele <= cthr

cele otherwise
(2)

Adding a constant ccst > 0 to all costs will reduce the r
but will maintain information of the unstructured cost. In the
case of large ccst values compared to the costs in Cele, the
planning behavior is similar to a binary cost map.

caug = cele + ccst (3)

No augmentation and thus a straight mapping from Cele:

https://rmc.dlr.de/benchmark_maps_2022
https://rmc.dlr.de/benchmark_maps_2022


caug = cele . (4)

Fig. 3: Augmenting the cost map (left) by adding a small
constant (right) leads to smoother and shorter paths. Paths
are black lines, obstacles are red, unknown cells are gray,
and costs from small to large are pink to green.

V. BENCHMARKING

A. Evaluation Criteria

For our purpose of autonomous navigation in planetary
environments, we are concerned about safety, effort and
maintaining a valid state estimation. We use the following
metrics on the paths found by an A* planner to compare
options for faug .

normalized average clearing distance Distance to obsta-
cles is the main safety metric. We normalize by the
average over all path for a given test case.

normalized path length Metric for effort and time of
reaching the goal. We normalize by the average over
all path for a given test case.

Angle over length (aol) This metric describes the smooth-
ness of paths. Path with less curvature are beneficial for
reliable vision based state estimation.

B. Experiments

We define a set of methods and parameters for faug and
use these to augment cost maps of three test cases. A test
case consists of Cele, start, and goal. The obstacle detection
is cobs = 0.75 for all test cases.

pararms # Option parameters

1 none

2 thresholding cflat > 0
cthr = 0.75

3 thresholding cflat = 0.05
cthr = 0.5

4 thresholding cflat = 0.05
cthr = 0.35

5 adding constant ccst = 0.7
6 adding constant ccst = 0.1

TABLE I: Set of methods and parameters for cost map
augmentation used in experiments.

Take note that parameter set 2 results in a binary obstacle
map since cthr = cobs. Any value cflat > 0 will result in
the same planned path.

Fig. 4: Augmenting the cost map of unstructured environ-
ments can be used to implicitly control the behavior of the
planner. Methods can be used to smooth paths (smaller aol),
emphasize path optimality more on path length. Obstacles,
unlike in structured environments, are often surrounded by
regions of high traversibility cost. Augmenting the cost map
may lead to changes in clearing to obstacles.

The metrics show that adding a large constant (params5)
to the map reduces the path length but also reduces the
average distance to obstacles. The reduction in distance
to obstacles is a result of the cost of the unstructured
environment, see fig. 4. A similar observation is done for
the case of binary maps (params2). This is as expected,
since both adding a large constant or setting all cost to a
constant reduce the ratio r.

Augmenting with a threshold (params3 and params4)
segregates the map into regions of constant small traversibil-
ity cost and regions of large cost. This results in longer paths,
as regions with high cost are circumvented.

Adding a small constant (params6) result in shorter paths
and smaller aol when compared to not augmenting the cost
but at smaller average distance to obstacles.



C. Benchmarking in Bench-MR using the datasets
We also used the provided datasets to benchmark some

of the path planning algorithms in Bench-MR to verify
the usability of the data in other benchmarking platforms.
Though, we had to make minor modifications to the input
data to meet the input requirements of Bench-MR like
inverting the cost as in Bench-MR lower cost is associated to
obstacles. Also, in Bench-MR, the environment is internally
converted to an obstacle map represented as occupancy-grid
based on a user-defined threshold. Therefore, we could not
use the continuous cost-space we provide in our datasets.
Shown in fig. 5 and fig. 6 are some of the plots resulting
from running the benchmarking of some of the sampling-
based path planners in Bench-MR.

Fig. 5: Paths computed using some of the different planners
in Bench-MR. Darker regions represent obstacles.

Fig. 6: Benchmarking results of some of the different plan-
ners in Bench-MR.

VI. CONCLUSIONS
We provide benchmarking datasets for the evaluation of

path planning of mobile robots in a planetary analogue

environment. As an environment representation for input to
the path planning algorithms, we provide 2.5D cost maps
which encode the cost of traversability for our planetary
rover prototype LRU. In addition, we also provide the 2.5D
elevation maps from which one can compute different cost
maps as they desire to meet the needs of their mobile robot
locomotion capabilities or to generate 2.5D cost maps of
different complexity. One can also generate binary occupancy
maps by applying a threshold to define which cost value
is to be treated as an obstacle. More importantly, we show
that benchmarking tools can also be used, to not only find
the right path planning algorithms, but also to tune the
parameters and decide on the best methods that are involved
in the generation of environment representations, which are
the input to the path planning algorithms. We showed this
with an experiment, in which we compare augmentation
methods in our 2.5D cost map generation process. As a next
step, we are in the process of evaluating also different path
planning algorithms.
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Prince, B. Rebele, M. Durner, E. Staudinger, S. Zhang, R. Pöhlmann,
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